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ABSTRACT
Cerebral small vessel disease (SVD) is a disorder frequently found among the old people and is associated with
deterioration  in  cognitive  performance,  parkinsonism,  motor  and  mood  impairments.  White  matter
hyperintensities (WMH) as well as lacunes, microbleeds and subcortical brain atrophy are part of the spectrum
of image findings, related to SVD. Accurate segmentation of WMHs is important for prognosis and diagnosis of
multiple neurological  disorders such as MS and SVD. Almost all of the published (semi-)automated WMH
detection models employ multiple complex hand-crafted features, which require in-depth domain knowledge. In
this paper we propose to apply a single-layer network unsupervised feature learning (USFL) method to avoid
hand-crafted features,  but rather to automatically learn a more efficient  set of features.  Experimental results
show that  a  computer  aided  detection  system with  a  USFL system outperforms  a  hand-crafted  approach.
Moreover, since the two feature sets have complementary properties, a hybrid system that makes use of both
hand-crafted and unsupervised learned features, shows a significant performance boost compared to each system
separately, getting close to the performance of an independent human expert. 

1. INTRODUCTION
Studies show that cerebral small vessel disease (SVD) is correlated with several problems, such as: cognitive
decline, dementia, Parkinsonism and motor- and mood impairments2,3. SVD presents with a spectrum of findings
on images of the brain that includes: white matter hyperintensities (WMH), lacunes,  microbleeds and brain
atrophy4.  Correctly  identifying  WMHs  is  valuable  for  the  prognosis  and  understanding  of  etiology  and
progression of SVD.
Clinically  the  presence  of  WMHs  is  sometimes  very  coarsely  scored  by  radiologists.  However  accurate
segmentation is done in research settings either by neurology experts, or (semi-)automatically using classical
machine  learning  techniques  employing  complex,  hand-crafted  features5.  Manual  annotation  has  several
drawbacks: It is usually very time consuming that makes it infeasible in practice for large datasets, and is subject
to significant inter- and intra-rater variability.  Classical  machine learning techniques are often faster than a
human in segmentation but encompass complex features, which require in-depth insight into the domain. Put
another way, in the traditional machine learning algorithms, the overall performance strictly depends on careful
domain-dependent choice of features.
Earlier  studies  on  automated  detection  of  SVD can  be  divided  into  two major  categories5:  supervised  and
unsupervised approaches. Supervised approaches include systems based on k-nearest neighbors20, support vector
machines21, Bayesian methods22,23, etc. Unsupervised approaches include: intensity threshold based segmentation
24,  adaptive threshold based segmentation25,  and more recent studies which also include spatial features and
neighborhood information26. 
Alternatively it is possible to learn an appropriate set of features with an unsupervised feature learning (USFL)
framework, in which, as the name suggests, the algorithm independently learns specific features that optimally
represent the data. Different USFL methods have been widely proposed and used in the past few years, resulting
in  excellent  performance  on  various  well-known datasets18.  However  methods  that  automatically  learn  the
features for the WMH segmentation task are rare29.
In this paper,  we propose to use k-means for  feature learning and we use the learned features in a sliding
window manner to segment the WMHs. We also compare the acquired computer aided detection (CAD) system
to a similar model but trained on hand-crafted features. Finally, a hybrid model trained on both the hand-crafted
and learned features is presented.



2. MATERIALS AND METHODS
2.1 Data
Data used in this paper is provided by the RUN DMC study1, which investigates the relation between SVD and
cognitive and motor status deterioration. The dataset consists of 503 MRI scans of individuals diagnosed with
SVD. MR images together with other motor and cognitive tests have been acquired.
Scans were conducted using a 1.5 Tesla Magnetom Sonata MRI scanner by Siemens AG. The process for each
patient  included  taking  three  separate  MR  scans:  T1,  T2*  and  FLAIR.  In  our  research  we  use  only  the
information provided by the FLAIR scans, because WMHs are most clearly –but not exclusively- visible on this
imaging modality. The FLAIR scans used in this study were made axially, at a resolution of 1.2×1.0×5.0 mm
with an inter-slice gap of 1.0 mm.
WMHs were  manually annotated on the FLAIR scans by a trained neurology resident.  50 cases  were also
annotated by another expert to check if they consistently marked the same parts as a WMH. From the total
population of  patients,  300  were  selected  for  training,  and  37 patients  for  testing.  The 37 test  cases  were
randomly taken from the subset of double annotated cases. 

2.2 Unsupervised feature learning
Within the USFL framework, we automatically learn a number of discriminative features from a set of images,
then we use those features to classify voxels in a given image. There are many variations of USFL algorithms18.
The one we utilize and describe in this paper is a simple but commonly used algorithm that has shown good
performance in different applications9,12. There are several deviations from the common method to accommodate
for the specifics of our dataset. The USFL algorithm consists of two main steps: 1) learning a set of optimal
dictionary terms from the data and 2) applying the learned dictionary terms to compute a new set of features for
a given sample. In this research we will use only a single-layer network to transform the features. Research by
Coates et al., 20119 shows that the number of dictionary terms is more important than the number of layers for
prediction power.

2.2.1 Learning the dictionary terms
Learning the feature mapping can be done in multiple ways. For example using sparse auto-encoders13, sparse
restricted  Boltzmann  machines14,  k-means  clustering15 and  Gaussian  mixtures16.  In  this  research  k-means
clustering is used, which is easy to implement and gives good results9. 
For k-means there is only one parameter to be chosen:  k as the number of centroids.  A greater  k will usually
improve classification results9, but at a higher computational cost. As input for the k-means algorithm, we take
patches of 5×5 voxels, flattened to a single vector per patch. The patches are taken for every voxel marked by
the readers as WMHs and an equal number of random voxels from the normal tissues of the brain. Subsequently
the k-means algorithm is performed to obtain a clustering of the feature vectors in the 25 dimensions space.
Centroids of each cluster are then computed and considered as the k  learned dictionary terms. Figure 1 shows a
visual representation of the learned dictionary terms for our dataset.

Figure 1: The set of learned dictionary terms for K = 200

2.2.2 Extracting the feature vectors
To learn the discrimination between WMHs and normal brain tissue, we consider the appearances in a local
16×16 neighborhood of each voxel. Local neighborhoods are sampled the same way as patches were taken for k-
means: All of the WMH positive voxels plus an equal number of random voxels are selected. In order to train a
classifier we need to map each local neighborhood to a feature vector. The procedure is depicted in Figure 2 and
is as follows: First, all  possible 5×5 patches (i.e.  s=1) are sampled and the corresponding feature vector of
length k is calculated for each by computing the patches’ distance to each learned dictionary term. Then each
neighborhood is divided into 4 pools and the average response of all the patches inside a pool to each dictionary
term is averaged. This way each pool is represented by a feature vector of lengthk . Finally concatenating the
features obtained from each pool together, a final representation of the whole local neighborhood of length 4×k
is acquired.



Figure 2: An Illustration of the feature extraction process on an input local neighborhood9, where n and w  are sizes of local

neighborhood and patches respectively, s represents the stride for patch sampling, d  is the number input channels, k  is

number of dictionary terms in k-means and f  stands for the transformation function from patches to vectors of dictionary
term distances.

2.3 Location features
Previous studies on detection of WMHs17,  5 show that  spatial  location information is very important  for  an
accurate detection. This means that a CAD system that perfectly captures the local appearance, still does not
perform optimally. For this reason we augment the automatically learned features with a set of eight spatial
location features. The location features used are: x-, y- and z-coordinates of the corresponding voxel in MNI 19

space, location-based WMH prior probability, and a set of Euclidian distances to several landmarks in the brain,
which  are  distances  to  brain  cortex,  left  and  right  ventricles  and  midsagittal  brain  surface.  WMH  prior
probability is the likelihood of occurrence of hyperintensities on the corresponding MNI atlas location that is
obtained from the large population of 503 patients from the RUN DMC dataset. 

2.4 Hand-crafted features
Features in an earlier research17, engineered and optimized on the same dataset, are used as a reference material
to benchmark our USFL algorithm. The set of hand-crafted features consists of 22 features in total that are: A
group of  intensity  features  including FLAIR and T1 intensities,  second  order  derivative  features  including
multiscale Laplacian of Gaussian (t=1,2,4 mm), multiscale determinant of Hessian (t=1,2,4 mm), vesselness
filter (σ=1mm), a multiscale annular filter (t=1,2,4 mm), FLAIR intensity mean and standard deviation in a
16×16 neighborhood, as well as the 8 location features as described in the previous subsection.

2.5 Model training
Once the two datasets for the automatically learned and hand-crafted features are created, we train a random
forest  classifier  with 50 subtrees,  with a  cross-validated max-depth to prevent overtraining.  We ran feature
learning our algorithm twice for k=100 and 200, with the location features augmented in both cases. Exactly the
same classifier was used to train on the hand-crafted features. We also combined the two feature sets to check if
the features from the two groups could possibly complement each other and result in a boosted performance of a
hybrid system.

2.6 Segmentation
For the segmentation of the test images, we consider local neighborhoods for all voxels that are to be classified
in a sliding window fashion. For each local neighborhood, we compute the corresponding feature vectors and
assign the central voxel with a likelihood resulted by the model. We then threshold the resulting likelihood map
on all test images with a unique optimized threshold for the Dice score, to obtain binary segmentation masks.

3. RESULTS
We evaluate and compare the performance of the proposed algorithm based on the Dice coefficient, which is the
most widely used evaluation for WMH segmentation task5. Table 1 demonstrates and compares the performance
of the different algorithms and the human experts, considering expert 1, expert 2 and the logical OR of the two
experts as the reference standards. We also perform a statistical significance test, by means of comparing the
performances of different methods on 100 bootstraps of test cases and reporting the resulting p-values. Results
are presented in table 2. Figure 3 shows a comparison of ROC curves for different methods at low false positive



rates,  where  the highest  agreement  between the segmentations of the system and the reference  standard  is
achieved. Figure 4 displays segmentation for three cases.

Figure 3: ROC curves comparison for different methods using expert 1 (left). and expert 2 (right) as the reference standard.

Table 1: Unsupervised feature learning and handcrafted feature results

4. 

Table 2:  P-values for statistical significance comparison of different methods. pij represents the probability for the null

hypothesis that the method in row i is better than the method in column j .

4. DISCUSSION AND CONCLUSION
Considering the experimental results presented in Table 1 and Figure 2, the automatically learned features, even
though  do  not  require  any  knowledge  from  domain  experts,  appear  to  be  comparably  reliable  for  the
segmentation of WMHs. Referring to Table 2, a significantly better performing hybrid CAD system can be
achieved by combining the two sets of features that are apparently complementary to each other. 
The number of dictionary terms can be indicative in the performance of the k-means USFL algorithm; a larger
set of learned dictionary terms, leads to a slightly better discrimination between WMHs and normal appearing
brain tissue. This is in accordance with results obtained in other studies 9. The better performance is obviously
achieved at a higher computational cost.
Further investigation of the algorithm parameter space is possible by changing the local neighborhood size,
which was kept 16×16 voxels in this study. Although larger local neighborhood sizes, will help capture more
contextual information, they might result in lower localization accuracy. An optimal value for this could be
found considering this trade-off. The dictionary patch size of 5×5 voxels can also be tweaked to possibly obtain
a better result. Changing the pooling shape is also another option.

Reference standard Hand-
crafted

USFL 
(k  = 100)

USFL 
(k  = 200)

Hybrid (k=100) Exp1 Exp2

Dice (exp1) 0.709 0.718 0.718 0.744 - 0.792
Dice (exp2) 0.702 0.711 0.712 0.737 0.792 -
Dice (exp1|exp2) 0.718 0.724 0.727 0.752 - -

Method USFL 
(K = 100)

USFL 
(K = 200)

Hybrid (k=100)

Hand-crafted 0.20 0.14 <0.01
USFL (K=100) - 0.15 <0.01
USFL (K=200) - - <0.01



Figure 4: The performance of the hybrid model on three sample slices.  The columns represent original FLAIR,
annotations of human expert 1, expert 2 and segmentations of the hybrid model (k=100) from left to right

respectively.
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