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“Essentially, all models are wrong, but some are useful.”

- George Box, 1987.
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4 Introduction

This thesis focuses on the application of machine learning techniques for character-
ization and quantification of the imaging biomarkers for cerebral small vessel dis-
ease (SVD). This first chapter provides a general background for the other chapters
in this thesis: We first introduce the general concepts in SVD and its Magnetic Res-
onance (MR) Imaging biomarkers, including white matter hyperintensities (WMH)
and lacunes of presumed vascular origin. This is then followed by an overview of
computer-aided detection (CAD) and its conventional pipelines as well as an in-
troduction to representation learning and deep convolutional neural networks. We

finally present the outline of the manuscript.

1.1 Cerebral Small Vessel Disease

Cerebral small vessel disease (SVD) is a frequently found neurological disorder among
the elderly and is defined as “ a syndrome of clinical and imaging findings that are
thought to result from pathologies in perforating cerebral arterioles, capillaries and
venules”!. The investigation of SVD and its pathological studies date back to the
19th century?. Later on, researchers achieved a better understanding of its mecha-
nisms and appearances with the advent of the Computed Tomography (CT) scanners
in the 70s and MR machines in the late 80s, when the damaged areas of white matter
were noted and first referred to as leukoaraiosis by Hachinski et al.>.

SVD spectrum is represented by a number of imaging changes in the subcortical
gray matter and white matter of the brain that includes recent small subcortical in-
farcts, white matter hyperintensities (WMH), lacunes, cerebral microbleeds (CMB),
perivascular spaces (PVS), and brain atrophy!#, among which, the second and the
following are called the clinically silent SVD imaging features'. Figure 1.1 illustrates
the appearances of some of SVD imaging bio-makers on sample MR slices together

with a description of their appearance and the measures of interest.

1.1.1 Epidemiology

It is estimated that currently, about 36 million people worldwide live with dementia,
while the incidence of dementia is expected to triple by 2050°. Annually, about 15
million people experience a stroke, among whom 6 million people die, and 5 million
people survive with a life-long disability®. With their frequent occurrences and the
high costs imposed to the society, preventing dementia and stroke are top priorities
to the governments. Given that 20% and 40% of incidences of stroke and demen-
tia are respectively attributed to SVD’, a better understanding of the mechanisms

causing SVD and those leading to progression is of great value.
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Sample slice Abstract visual Description Measures of
appearance interest
White matter Volume
hyperintensitiy (WMH) Location
Higher intensity signal on (anatomical
FLAIR region)
Variable in shape Number
Variable in size
Within white matter
More likely in the
periventricular area
FLAIR 90% for age = 60
Lacune Number
Hypointense signal on Location
FLAIR (anatomical
Often with a hyperintense region)
rim Size (max.
Round or ovoid shape diameter)
3-15 mm in size
20% for age = 60
Perivascular space (PSV) Number
Hypointense signal on Location
FLAIR (anatomical
T2 Round or linear shape region)
Often without the Size (max.
hyperintense rim diameter)
< 3 mm

Figure 1.1: Appearances of white matter hyperintensities, lacunes and perivascular
spaces as imaging features of small vessel disease?, illustrated on the first to the third

rows respectively.

WMHs are highly frequent findings on the MR images of elderly people. The
occurrence rate of WMHs among the people older that 60 years is reported as high
as 90%® with a progression between 0.2 and 2.5 mL/year®!!. Lacunes are present in
about 20% of persons among the same age group with an annual incidence rate of

0.7 to 6 percent 13,
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1.1.2 White matter hyperintensities

White matter hyperintensities, were reported in earlier pathological studies as ar-
eas of demyelination and axonal loss in the white matter of the brain, describing

it as ischemic changes!'#1

. This suggests that these changes are permanent, how-
ever, some studies have reported WMHs that are declined or disappeared®, that
can not be justified well with the former description. More recent observations on
imaging studies suggest that changes in interstitial fluid mobility can better explain
the earliest pathological processes responsible for white matter hyperintenities?, as
these changes may be reversible and forerun axonal damage and demyelination®.

On MR images, WMHs are areas of signal abnormality within the white matter
that appear hyperintense on T2-weighted images and hypointense (though not as
hypointense as the cerebrospinal fluid (CSF)) on the T1-weighted sequences, where
the level of intensities are dependent on the severity of the pathological change and
the sequence parameters*. WMHs are variable in size and shape and are more likely
in the periventricular region. Hyperintensities can also occur in basal ganglia or
other sub-cortical gray matter structure as well as in the brain stem, but these are not
categorized as WMHs*.

It has been reported that relationships exist between WMH severity and other

neurological disturbances and symptoms including cognitive decline?!?

, gait dys-
function?®, depression? and mood disturbances®. Existence of WMHs is shown to
triple the risk of stroke and double the risk of dementia®.

The neuro-imaging standards for conducting research on SVD* recommends the
volume, location (anatomical region) and the number of WMHs as the measures of
interest for quantifying WMHs. Simplified visual ratings such as the Fazekas score®’
are often too coarse to relate well with the outcome measures or reflect the WMH
growth in longitudinal studies. Manual annotation of the whole WMH volume is a

tedious task that often suffers from inter- and intra-rater Variabilityzg.

1.1.3 Lacunes

Lacunes are frequent findings on MR images of old patients, occurring with no
symptoms. Lacunes are associated with an increased risk of dementia, stroke, and
gait impairment®!. Lacunes of presumed vascular origin are defined as round or
ovoid shape subcortical fluid-filled cavity, with signal intensity similar to the CSEF,
with a diameter between 3 and 15 mm*. Lacunes are often presented with a central
CSF-like intensity and a hyperintense rim on the fluid-attenuated inversion recov-
ery (FLAIR) T2 sequence, though the hyperintense rim is not always present and
can also accompany PSVs if they pass through a region of WMHs*. It is important
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to distinguish lacunes from perivascular spaces, however, the visual discrimination
between the two is challenging; The pathological studies do not propose an absolute
cut-off size, stating CSF-filled cavities with a diameter smaller than 3rmm are more
likely to be perivascular spaces. The size-based distinction becomes even fuzzier
with the possibility of enlarged perivascular spaces that can grow up to 20mm in di-
ameter. The measure of interest for lacunes are the number of occurrences, location

(anatomical region) and their size (maximum diameter)*.

1.2 Computer-aided detection

Computer-aided detection (CAD) is defined as a computerized technology devel-
oped to assist the radiologists in detecting potential abnormalities®” and facilitate
the diagnostic procedure. Attempts to develop CAD systems was commenced al-
ready in the 60s with a publication focusing on the analysis of pulmonary lesions in
chest radiographs®®. These attempts resulted in a multitude of successful computer-
ized systems for various tasks and domains including development of CAD systems
for lung nodule detection®, stellate distortions detection in mammograms®, lesion

3637 and drusen detection in retinal images>® through the

detection in histopathology
next few decades. Even though the word “aided” in computer aided detection sug-
gests that these systems are designed to be used as assistants to the radiologists,
nowadays with the substantial improvements in the machine learning and computer
vision fields, we observe the advent of intelligent systems that are accurate and reli-
able enough to be used independently®.

Brain MR image analysis is perhaps among the domains that have gotten the most
attention from the community to develop intelligent automated systems for various
tasks including brain extraction®’, bias-field correction?!, segmentation of brain tis-
sue*, anatomical structures®, multiple sclerosis lesions*!, white matter hyperinten-
sities®, brain tumors*, detection of microbleeds*, lacunes*, diagnosis of demen-

tia*, grading of tumors™, and survival prediction'.

1.2.1 Conventional medical image processing

Simple rule-based systems dominated the first years of computer-aided detection.
However, with the higher expressive power of the machine learning algorithms that
could learn the more complex interactions between the variables, a huge trend to-
ward using machine learning was observed in the later decades. A standard med-
ical image analysis pipeline often consists of several steps including preprocessing,

feature extraction, training, and postprocessing. Figure 2.3 illustrates the machine
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learning pipeline steps, distinguishing the training and the test time.

raming » Preprocessing eatulte Training » Validation
Training pattern calculation
Test
T . F . . .
est » Preprocessing eatur.e Classification » Evaluation
pattern calculation

A 4

A 4

A

Figure 1.2: The standard medical image analysis pipeline illustrated for the training

and the test time.

1.2.2 Deep Learning

A crucial step in a CAD processing pipeline is the feature learning process. Non-
optimal sets of features will substantially increase the complexity of the problem and
hinder the success of the whole pipeline. It also requires a lot of domain knowledge
that is either lacking or difficult to obtain in many cases. Even with the experts avail-
able, it is often difficult to learn about the underlying working mechanisms from the
experts as the working principles usually become an unconscious routine rather than
a critical thinking/decision process, as the task is repeated over and over. Another
serious problem with hand-engineering of features is that they are often task depen-
dent and the same efforts for deriving the features should be retaken once working
on a slightly different task or domain.

For the reasons mentioned above, researchers are motivated to develop algo-
rithms that aim an automated representation learning. Due to the possible complex-
ity of the structures that we often look for, besides an automated feature learning
process, having a hierarchical feature representation would be of great help. This is
because combining simpler feature detectors, analogous to simple building blocks,
in order to create more complicated structure is much more efficient than represent-
ing all complex features in a plain structure. Deep learning®?, a technology of which
the foundations date back to the late 1980’s, emerged back a few years ago as a
breakthrough technology and is based on the two mentioned working principles:

automated representation learning and hierarchical feature representation.
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1.2.3 Convolutional neural networks

A convolutional neural networks (CNN)® is a specific kind of neural network that
is suitable for data that has a grid-like topology>*. Referring to the the name, CNNs
are types of neural networks that are mainly relying on convolutions, which are
specialized linear operations. A convolutional network is usually a stack of layers
each consisting of three basic operations: convolutions, non-linearities, and pooling.

In the following, we will briefly cover each concept.

Convolution

Discrete convolution is defined as follows:

S(i,j) = (I« K)(i,j) => > I(m,n)K(i—m,j—n), (1.1)

In CNNs, the first argument to the convolution (/) is the input signal/image, the
second argument (K) is the convolutional kernel (also referred to as convolutional
tilter) and the output (5) is often called the feature map.

There are three closely related important properties that are leveraged by the con-
volution operation that help CNNs to improve over conventional neural networks.
These are the sparse connectivity, parameter sharing and the equivariant representation>*.
To elaborate the rationale behind the use of convolutions in neural networks, in the
following paragraphs each property is briefly expanded.

Sparse connectivity: In conventional neural networks, the values in the feature
map are computed over the whole input image with independent connections, while
each feature map value is obtained from a small neighborhood around it. Techni-
cally, this can be achieved using a kernel size, much smaller than the input size. This,
in turn, results in a number of advantages: fewer parameters reducing the memory
requirement, improving the statistical efficiency and more importantly, decreasing
the computational costs.

Parameter sharing: In traditional neural networks, each parameter in the weight
matrix is used only once while computing each feature map. In contrast, the pa-
rameters in the convolution operation are tied to share values. This is because each
parameter within each kernel is used at every different location throughout the input
signal/image. This implies that instead of using different feature detectors for dif-
ferent locations, same feature detector is assumed to be useful in all locations. This
substantially decreases the number of parameters.

Equivariant representation: Convolutions are shift equivariant, meaning that

applying a shift to the image and performing convolution produces the same result
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as a convolution operation followed by a shift transformation. This implies that if
a structure appears in different locations within the image, then the same feature
detector would be able to detect the structure. For instance, a kernel that detects
a certain edge structure in the first layer of a network is useful throughout the im-
age to detect the same edge structure. It should be noted that convolutions are not

equivariant to other transformations, for instance, the rotation, scaling, shearing, etc.

Non-linearity

Non-linearities (also known as activation functions) are inherited from the tradi-
tional neural networks and are incorporated to enable non-linear discriminant bound-
aries. Without non-linearities, a stack of linear layers would result in another lin-
ear operation, therefore, basically stacking layers without non-linearities involved
is meaningless. Traditionally the sigmoid or Tanh non-linearities were used. How-
ever later Hochreiter et al.> found out that the saturated regime of these two non-
linearities might diminish the gradient in the shallower layers during the back-propagation,
known as the vanishing gradient problem. The more modern non-linearity that was
used later, and does not suffer from this in the activated input range, is the rectified
linear unit (ReLU) which is defined as f(z) = maxz(0, z). Another advantage for this
non-linearity is its computational efficiency compared to the other two. Figure 1.3

demonstrates these three activation functions.
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Figure 1.3: From left to right: The sigmoid, the tanh and the ReLU activation func-

tions.

Pooling

Pooling is another operation often used after convolutional layers. Pooling involves
replacing a rectangular neighborhood with some statistics summarizing the responses
in the feature map. For instance, max and average pooling replace the neighborhood
with the maximum and average responses respectively. Figure 1.4 provides an il-
lustration for the max pooling operation. Max pooling is the more frequently used
form of pooling which has two major advantages: the compact representation and the

translational invariance. Pooling makes the feature representation smaller and more
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manageable, therefore cheaper to store and computationally more efficient. Transla-
tional invariance means that the operation is insensitive to small translations of the
structure of interest. This becomes more notable once having several pooling layers,
which implies no matter where the structures similar to the feature detectors (ker-
nels) appear, the operation will give a high response. This is especially useful when

dealing with classification problems.

Single depth slice

% 6|1 2|4
max pool with 2x2 filters
5|1 7|8 and stride 2 6| 8
3| 3|0(0 314
1123 |4
y

Figure 1.4: An illustration of the max pooling functionality.

1.3 Thesis outline

This thesis is devoted to developing fully automated methods for quantification of
small vessel disease imaging bio-markers, namely WMHs and lacunes, using vari-
ous machine learning/deep learning and computer vision techniques. The rest of the
thesis is organized as follows: Chapter 2 describes a conventional machine learning
method for automated detection of WMHs. It should be noted that this method is
optimized to detect WMHs of all size, including small lesions which are much more
difficult to spot, rather than accurately delineating the WMH boundaries. Chap-
ter 3 describes a customized deep learning method for automated segmentation of
WMHs. In Chapter 4, we develop and experiment with a biologically inspired sam-
pling method combined with deep neural networks. Chapter 5 is devoted for delv-
ing deep into transfer learning of the trained deep networks on different domains
for the WMH segmentation task. Finally, in Chapter 6, we describe a two-stage deep
learning method for detection of lacunes.






Detection of White Matter Hyperintensi-

ties

M. Ghafoorian, N. Karssemeijer, LW.M. van Uden, E-E. de Leeuw, T. Heskes, E.
Marchiori and B. Platel

Original title: Automated Detection of White Matter Hyperintensities of All Sizes in

Cerebral Small Vessel Disease

Published in: Medical Physics 6246-6258, 2016



14 Detection of White Matter Hyperintensities

Abstract

White matter hyperintensities (WMH) are seen on FLAIR-MRI in several neurologi-
cal disorders, including multiple sclerosis, dementia, Parkinsonism, stroke and cere-
bral small vessel disease (SVD). WMHs are often used as biomarkers for prognosis
or disease progression in these diseases, and additionally longitudinal quantification
of WMHs is used to evaluate therapeutic strategies.

Human readers show considerable disagreement and inconsistency on detection of
small lesions. A multitude of automated detection algorithms for WMHs exists, but
since most of the current automated approaches are tuned to optimize segmentation
performance according to Jaccard or Dice scores, smaller WMHs often go undetected
in these approaches. In this paper, we propose a method to accurately detect all
WMHEs, large, as well as small.

A two-stage learning approach was used to discriminate WMHs from normal
brain tissue. Since small and larger WMHSs have quite a different appearance, we
have trained two probabilistic classifiers: one for the small WMHSs (< 3mm effective
diameter) and one for the larger WMHs (>3mm in-plane effective diameter). For
this 5 iterations of Adaboost on random forests with 22 features including intensi-
ties, location information, blob detectors, and second order derivative features was
executed. The outcomes of the two first-stage classifiers were combined into a single
WMH likelihood by a second-stage classifier. Our method was trained and evalu-
ated on a dataset with MRI scans of 362 SVD patients (312 subjects for training and
validation annotated by one and 50 for testing annotated by two trained raters). To
analyze performance on the separate test set, we performed a free response oper-
ating characteristic (FROC) analysis, instead of using segmentation based methods
that tend to ignore the contribution of small WMHs.

Experimental results based on FROC analysis demonstrated a close performance
of the proposed computer aided detection (CAD) system to human readers. While
an independent reader had 0.78 sensitivity with 28 false positives per volume on
average, our proposed CAD system reaches sensitivity of 0.73 with the same number
of false positives.

We have developed a CAD system with all its ingredients being optimized for a
better detection of WMHs of all size, that shows performance close to an indepen-

dent reader.
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2.1 Introduction

Cerebral small vessel disease (SVD) is a frequently found neurological disorder in
elderly people, which makes it a growing concern for countries with ageing popu-
lations. As measured in the Rotterdam study® on a population of 1077 randomly
selected elderly people, the prevalence of SVD has been reported to reach up to 95%.
The SVD spectrum includes amongst others, white matter hyperintensities (WMH)
(also known as white matter lesions or leukoaraiosis), lacunes of presumed vascular
origin (lacunes), cerebral microbleeds and brain subcortical atrophy*. There is evi-
dence for increased risk of cognitive, motor and mood disturbances, ultimately lead-
ing to dementia and Parkinsonism in a small number of patients diagnosed with
SVD?212>°6%8 - Considering these, some studies are investigating the effect of SVD
on the transition from non-demented elderly people with SVD towards the men-

tioned disorders®®0

. One of the most important and common findings in MRI im-
ages of SVD patients are WMH®. WMHs are areas of demyelinated cells found in
the white matter of the brain that appear as high value signals on T2 weighted or
fluid-attenuated inversion recovery (FLAIR) MR images.

WMHs are not only found in SVD patients but are common findings on brain
MR images of the patients diagnosed with multiple sclerosis (MS)®!, Alzheimer’s
disease®, other forms of dementia®, stroke® and Parkinsonism®. In many studies
a relationship between WMH severity and neurological symptoms, including cogni-
tive decline?', gait dysfunction® as well as depression and mood disturbances®??,

were reported.

WMHs are often used as biomarkers for prognosis and disease progression in
white matter disorders and additionally longitudinal quantification of WMHs is
used to evaluate therapeutic strategies. For this reason accurate quantification of
WMHs in terms of total load (total volume of WHMSs), number of lesions and loca-
tion distribution is interesting, not only for research purposes, but also for develop-
ment of clinical applications. Manual segmentation of WMHs is a potential solution,
but has several drawbacks: it is very time consuming, as it can take up to 5 hours,
according to our local domain experts. It is also subjective and prone to miss small
WMHs. For instance referring to Figure 2.1 the readers miss or disagree on 30% of
WMHs with in-plane effective diameter of 3 mm or less. Therefore automated quan-
tification of WMHs is an attractive topic for research and hence many automated
methods have been proposed over the years. A number of methods use unsuper-

vised approaches to cluster WMHs as outliers®®"°

, while other methods segment
WMHs using supervised machine learning techniques’®®*. Although a multitude

of approaches has been suggested for this problem, a truly reliable fully automated
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Figure 2.1: Inter-reader agreement based on maximum WMHs in-plane effective di-

ameter. The agreement factor represents the proportion of the total WMHs in both

readers annotations, smaller than a specified size, that are intersecting with an anno-

tation of the other reader by at least one voxel.

method that performs as good as human readers has not been identified *%¢.

The assumptions that motivate the use of human readers annotations (although
they are not perfect referring to Figure 2.1) as the ground truth for training and eval-
uation are the following: First, there are no alternatives yet proven to provide better
segmentation than human readers annotation. Second, the readers are assumed not
to persistently make errors for a specified class of WMHs (e.g always overlooking
small lesions). Referring to Figure 2.1 for the small WMH category, the readers still
agree on majority (70%) of cases. This lets the machine learning systems to be able
to statistically learn about the categories that were occasionally wrongly labeled.

Nearly all of the existing methods, of which some are referenced above, are devel-
oped to segment WMHSs and are tuned to maximize overlap between areas of WMH
as measured by the Jaccard or Dice coefficient®®. As a result, small WMHs might
be ignored since they hardly contribute to the Jaccard or Dice performance®® as they

form a small part of WMH volume.

Especially for SVD small WMHs are abundant and appear to be important. An-
alyzing the annotations made by human readers in our dataset of over 500 SVD pa-
tients, the in-plane effective diameter of over 60% of WMHs is equal to or less than 3

mm, where the in-plane effective diameter is the diameter of a circle with the same
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area. This large amount of small WMHs only contributes to 15% of the total volume.
This implies that with a more accurate detection of small WMH, it is possible to
better assess the location and number of WMHSs. Moreover, small WMH detection is
vital for tracking lesion growth and general measurement of WMH progress speed.
The detection of small WMHSs can be indicative for neurological deficits that will
emerge over time. As Schmidt et al.¥ suggest, progression of WMH as shown by
MRI may provide a surrogate marker in clinical trials on cerebral small-vessel dis-
ease in which the currently used primary outcomes are cognitive impairment and

dementia.

Considering the above, accurate detection of WMHSs, both small and large, is an
interesting subject for research e.g. to be able to longitudinally monitor WMH pro-
gression. Further research needs to be done to investigate the clinical importance of
small WMHs. Empirical results of our RUNDMC study show that some small le-
sions grow in size over time, which could indicate the relevance of small lesions for
the prediction of disease progression. It is recommended to detect WMHs of all size
and to consider the number of WMHs, together with their volume and location dis-
tribution as the measures describing WMH characteristics and severity, as described
in the SVD standards for neuroimaging research®. It should be noted that the num-
ber of detected WMHs would be highly influenced by the quality of the detection
for small WMHs as they form the majority of WMHs in counts (see Figure 2.2).

There are some fundamental differences in the characteristics of small (<3mm in-
plane effective diameter) and large (>3mm in-plane effective diameter) WMHs. First
of all, small WMHs usually appear to have a different intensity range likely because
of the partial volume effect® (which occurs when voxels cover tissue boundaries
and therefore represent a mixture of tissues). Secondly, small WMHSs usually appear
as blob like structures, while larger WMHs can show up in more arbitrary shapes.
Thirdly, small lesions tend to appear at different locations than larger WMHSs, which
occur more often along the ventricles?'. The heterogeneity of the smaller and larger
lesions, makes their representation scattered over different regions in the feature
space resulting in a highly non-linear problem and therefore making it more difficult
to solve®. Given this, we were motivated to reduce the complexity of the problem
by dividing the WMHs into small and large WMH categories and learn each concept
separately by means of supervised machine learning.

As discussed before, measures regarding the overlapping area, such as Dice or
Jaccard, do not sufficiently reflect the detection of smaller lesions. Therefore we uti-
lize a free-response receiving operating characteristic (FROC) analysis® to evaluate

the performance of the proposed method.

In this paper we present a method for the accurate automatic detection of WMHs
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Figure 2.2: Distribution of WMH sizes in the reference annotation in two datasets of
SVD and MS.

in SVD. Where the state-of-the-art approaches do not specifically focus on the small
WMHs, we use a novel approach in which we detect WMHSs by combining the out-
put of two separate classifiers, one for large and one for small WMHs. To describe
each of the lesion types we introduce a set of specialized features. The results of our
method are compared to manual annotations of two human readers, showing a close

performance of the resulting CAD system to human readers.

2.2 Materials and Methods

The overall pipeline for this automated detection task consists of data acquisition,
image preprocessing, feature calculation, training and evaluation. Figure 2.3 shows
an overview of the whole pipeline. Method components will be expanded in sepa-

rate subsections subsequently.

2.2.1 Data

The research presented in this paper uses data from a follow-up study called Rad-
boud University Nijmegen Diffusion tensor and Magnetic resonance imaging Co-
hort (RUN DMC)%. Baseline scanning was performed in 2006. The patients were
rescanned in 2011/2012 and 2015. This study was approved by the Medical Review
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Figure 2.3: An overview of the steps taken for the overall image analysis task.

Ethics Committee region Arnhem-Nijmegen. All participants gave written informed

consent prior to inclusion.

Subjects

Subjects for the RUN DMC study were selected at baseline based on the following
inclusion criteria®: (a) aged between 50 and 85 years (b) cerebral SVD on neuroimag-
ing (appearance of WMHSs and/or lacunes).

Exclusion criteria comprised: presence of (a) dementia (b) parkinson(-ism) (c) in-
tracranial hemorrhage (d) life expectancy less than six months (e) intracranial space
occupying lesion (f) (psychiatric) disease interfering with cognitive testing or follow-
up (g) recent or current use of acetylcholine-esterase inhibitors, neuroleptic agents,
L-dopa or dopa-a(nta)gonists (h) non-SVD related WMH (e.g. MS) (i) prominent vi-
sual or hearing impairment (j) language barrier and (k) MRI contraindications. Based
on these criteria, MRI scans of 503 patients were taken. All of the subjects showed
(at least mild) appearances of WMH in their MR images. The distribution of the
Fazekas scores” of the scanned subjects were as follows: 66% Fazekas 0 or 1 (mild

lesion load), 21% with Fazekas 2 (moderate load), and 13% with Fazekas 3 (severe
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lesion load).

Magnetic Resonance Imaging

The machine used for the baseline was a single 1.5 Tesla scanner (Magnetom Sonata,
Siements Medical Solution, Erlangen, Germany). The protocol included a 3D T1
magnetization-prepared rapid gradient-echo sequence (TR/TE/TI 2250 /3.68 /850
ms; flip angle 15; voxel size 1.0x1.0x1.0 mm) and FLAIR pulse sequences (TR/TE/TI
9000/84 /2200 ms; voxel size 1.0x1.2x5.0 mm, interslice gap 1 mm). All the scans
were acquired with the same acquisition settings and scanner with no major soft-

ware and hardware upgrades.

Reference Annotations

Reference annotations were manually created in a slice by slice manner by two trained
readers using a digital pen. The training procedure was as follows: The readers were
instructed on the manual annotation of WMHs and the use of the provided annota-
tion tools. Following the definition in®®, WMHs were defined as hyperintense le-
sions on FLAIR MRI that did not show corresponding cerebrospinal fluid like hypo-
intense lesions on the T1 weighted image, excluding Gliosis surrounding lacunes
and territorial infarcts. After these instructions both readers annotated a training set
of 50 unannotated cases, each reader was blinded to the annotations of the other. To
further reduce the inter-rater variability, these annotations were discussed together
with an experienced neurologist in a follow-up meeting. After this training 453 cases
were annotated by either one of the readers (Reader 1), and 50 cases were annotated
by both.

An investigation on the number of WMH annotations on different patients for reader
1 shows that on average 123 WMHs were annotated (lesions were counted on every
slice) with a standard deviation of 75. The average and standard deviation were
100 and 65 for reader 2 respectively. Figure 2.2 shows a histogram for the distribu-
tion of the in-plane effective diameters of WMH annotations created by reader 1 and
compares it to a similar histogram for MS lesions calculated from a publicly avail-
able dataset (ISBI 2015 longitudinal MS lesion segmentation challenge). This figure

illustrates that SVD has a higher concentration of small lesions compared to MS.

2.2.2 Preprocessing

Due to possible patient movements between scans of different imaging modalities

and uneven intensity profiles intra and inter subjects, image preprocessing is a cru-
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cial part of our algorithm. Below we give a short description of the steps taken to

prepare the images for feature calculation.

Registration, Skull Removal and Bias Field Correction

First of all, establishing a voxel classification method that uses intensity features, re-
quires locational alignment between each voxel in one modality and the correspond-
ing voxel in other modalities. Possible patient movements between different scans
make this a nontrivial step.

To tackle this, for each subject, T1 images were rigidly registered to the FLAIR
images by optimizing mutual information with trilinear interpolation resampling,
as implemented in FSL-FLIRT®?>. We avoid transforming the FLAIR image to T1 in
order to prevent possible artifacts on FLAIR and the annotations that are made on
the FLAIR image. In addition, all subjects were registered to the ICBM152 atlas® to
acquire a mapping from each subject space to the atlas space.

Once images were registered, skull, eyes and other non-brain tissues were re-
moved. For this, we made use of FSL-BET* on the patient’s T1 image and then
applied the resulting mask to the other modality. For FSL-BET, we used the robust
brain center estimation option, that iteratively calls BET with the initial center of
brain set each time to the centre-of-gravity of the previously estimated brain extrac-
tion. We chose T1 since it has the highest resolution among the three modalities.

Bias field correction is another necessary step due to magnetic field inhomogene-
ity. To this end, we applied FSL-FAST#! which uses a hidden Markov random field
and an associated expectation-maximization algorithm, solely for bias-field correc-
tion purpose. FSL-FAST was executed with two modalities (FLAIR and T1) as its
input channels, modeling the brain with 3 tissue classes.

Intensity Standardization

In addition to intensity inhomogeneities caused by the MR bias field, it is very com-
mon to see intensity inhomogeneity between different subjects. Correction of these
inter-subject intensity inhomogeneities is essential since MRI intensity is an impor-
tant feature.

The general approach that we followed, similar to most existing methods, was
to pick a reference image and transform other images, so that all intensity profiles
resemble each other. In order to get a finer intensity transformation, we considered
three different transformations for the three brain tissue types: gray matter (GM),
white matter (WM) and cerebrospinal fluid (CSF).

First, we extract the three tissues of the reference image using bi-variate Gaussian
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mixture modeling® of the two variables T1 and FLAIR intensities. We then project
each 2-D Gaussian on the dimension corresponding to FLAIR intensity, to obtain
three 1-D Gaussians for the reference subject, with means and standard deviations
(Wret,gms Oref,gm)s (Hrefwm, Orefwm), @NA (Lrefcsts Orefest). With a similar approach, we ob-
tain Gaussians for each template image (fitemp,gm, Ttemp,gm), (Htemp,wm/s Ttemp,wm), and
(fttemp,cst, Ttemp,est)- Then for a given intensity z, the transformed intensity depends on

the assumption made for the tissue it belongs to, using the following equation:

T — [btemp,
Ti(z) = M X Oref ke T Hrefk (2.1)

Utemp,k

where k € {WM,GM,CSF}. Gaussian mixture modeling provides the posterior
probabilities of intensities belonging to each tissue. Hence the following equation

was used to acquire the transformed intensity value:

T(z) = > Ti(z) % p(z € k) (2.2)

ke{W M,GM,CSF}

The same procedure was applied to standardize the T1 images.

Selection of training and test subjects

To enable comparison of our method with human readers, we use the 50 subjects
with two annotations for testing purposes and the rest for training our model. How-
ever, a number of cases contained artifacts that were obscuring fine structures of the
brain. We opted not to include these cases in our training set. We visually filtered out
cases that showed scanning artifacts due to head movements during the scanning as
well as the cases for which one of the preprocessing steps failed (most often registra-
tion, or brain extraction failure). After this selection 312 scans remained to train the
system. From the 50 double annotated cases that were used for testing performance,
32 were found not to contain severe artifacts, the remaining 18 more challenging
cases were not removed from the test set, but were evaluated separately. Table 2.1
represents the number of cases filtered for each of the reasons. We should note that
we also evaluate our method on the problematic cases of the test set to show to what

extent our CAD system is usable for these cases.

2.2.3 Detection

As Figure 2.2 suggests, the majority of WMHSs in SVD is tiny. Due to the different lo-
cation and appearance of small and larger WMHs, intuitively they require a different
set of features to describe their appearances. Considering this, a single WMH clas-

sifier potentially misses small WMHs. We therefore specify two different classifiers,
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Set Movement artifcats Brain extraction failure Registration failure

Train 104 36 1
Test 16 2 0
Total 120 38 1

Table 2.1: Case removal cause distribution in the training and test sets.

which were trained on the same set of subjects, but using different sets of features
for small (<3mm in-plane effective diameter) and larger WMHSs. The final goal is
an algorithm that specifies for each voxel the likelihood that it belongs to a WMH,
independent of whether it belongs to a small or a large WMH. We have built two
first-stage classifiers that each provide us likelihoods for small® and larger WMHs
and one second-stage classifier that combines the two likelihoods into a single WMH
likelihood. Each learning problem is described in one of the following subsections.
As training cases 312 subject images that were annotated by reader 1 were used and

we evaluated the system on 50 double annotated subjects in total.

Small and Large WMH Detectors

Features
Using voxels as training samples, we trained two voxel-based classifiers, one for
small and one for larger WMHs. Every single voxel for the larger WMH detec-
tor was characterized by eleven features. The first two features correspond to the
bias field corrected, standardized FLAIR and T1 intensities. WMHSs in SVD are not
uniformly distributed over different locations. For example, WMHs often occur in
the periventricular region. Furthermore, although voxels in the septum pellucidum
might appear hyper-intense, they do not originate from white matter demyelination
and thus do not belong to WMHs.
This then motivates the following features: X, Y and Z coordinates as measured in
the reference space defined by the ICBM152 atlas, and the voxel’s shortest Euclidean
distance to the left and right ventricles, brain cortex and midsagittal brain surface.
In addition, from a large number of subjects with WMH annotations, we computed
the distribution of WMHs over different locations. For each atlas space location, the
proportion of subjects with a WMH in the corresponding position was calculated
yielding a prior probability map. This WMH occurrence prior probability map, vi-
sualized for a sample case in Figure 2.4, provides another feature. The full list of
features used is shown in Table 2.2.

For the small WMH detector, we take the same eleven features as for the larger

WMH detector, plus a set of additional features considered exclusively for charac-
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Small Large Second

Feature
Feature WMH WMH stage
Group i
detector  detector classifier
Intensities FLAIR intensity Yes Yes Yes
T1 intensity Yes Yes Yes
Xin atlas space Yes Yes Yes
Y in atlas space Yes Yes Yes
Z in atlas space Yes Yes Yes
Location Shortest Euclidean distance to the brain cortex Yes Yes Yes
Shortest Euclidean distance to the right ventricle Yes Yes Yes
Shortest Euclidean distance to the left ventricle Yes Yes Yes
Shortest euclidean distance to the midsagittal brain surface ~ Yes Yes Yes
Prior probability based on atlas location Yes Yes Yes
Laplacian of Gaussian (small scale) Yes No Yes
Laplacian of Gaussian (medium scale) Yes No Yes
Laplacian of Gaussian (large scale) Yes No Yes
Determinant of Hessian (small scale) Yes No Yes
Blobness Determinant of Hessian (medium scale) Yes No Yes
Determinant of Hessian (large scale) Yes No Yes
Grayscale annular filter (small scale) Yes No Yes
Grayscale annular filter (medium scale) Yes No Yes
Grayscale annular filter (large scale) Yes No Yes
Vesselness Yes No Yes
Second orders o .
Gauge derivative in the direction of the normal vector Yes No Yes
Tissue segmentation Yes No Yes
Size-separated Likelihood of being small WMH No No Yes
WMH likelihoods  Likelihood of being large WMH No No Yes

Table 2.2: Features used for small WMH, large WMH and second stage classifiers

(a) One FLAIR slice (b) Corresponding WMH
of a sample prior probability in the

patient patient space

Figure 2.4: A sample subject prior probability for occurrence of WMH.

terizing small WMHSs. Because small WMHs usually appear as a blob-like struc-
ture, we include as features various measures of blobness at different scales: Lapla-

cian of Gaussian, determinant of the Hessian matrix and the output of a multi-scale
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grayscale annular filter®®, each at three different scales: t=1, 2 and 4 mm. In addition,
because WMHs occur in WM by definition, the segmentation results obtained from

the standardization step provide a discrete variable taking three values.

In some cases, GM parts of cortex appear as isolated structures inside the WM,
due to the 3D folding pattern and the sliced based imaging. Since GM has higher sig-
nal intensity in FLAIR compared to normal WM, it is important to distinguish these
GM parts from true WM to prevent false detections. These GM structures usually
appear in an elongated shape. Therefore, we include two features for characterizing
these vessel-like structure: vesselness (c=1) and gauge derivative in the direction of

the normal vector”.

Sampling

Following are the details of how we select for each classifier the samples that rep-
resent the tissue of interest to be detected (positive samples) and the samples that
represent the background tissue (negative samples). For both larger and small WMH
detectors we utilized 75% of training subjects. In our voxel-based classification scheme,
we only select voxels from these subjects for training. WMHs were separated into
small and larger WMH categories using a size threshold on the manual annotations:
a WMH with an effective diameter smaller than or equal to 3 mm is considered small
and hence a positive sample for the small WMH detector. WMHSs with an in-plane
effective diameter larger than 3 mm were considered large and hence seen as a posi-
tive sample for the large WMH detector. We picked this threshold referring to WMH
size distribution illustrated in Figure 2.2, where 3 mm is two times larger than the
small WMH distribution peak at 1.5 mm effective diameter. Normal brain voxels are
potential negative samples for both size-separated classifiers.

To prevent trivial negative samples, we removed all voxels with FLAIR signal in-
tensity lower than a threshold, as well as the voxels that belong to ventricles. This
threshold was selected based on intensity distribution of lesions after the intensity
standardization, to make sure that all lesions in our dataset are preserved in the
remaining voxels. Because there are many more negative samples compared to posi-
tives, we included all positive samples of the subject considered for training into the
training set and randomly picked 2% of the remaining negative samples.

We left out the small WMH samples from the training set of the large WMH detec-
tor and vice versa. That is, they were neither considered as positive nor negative
samples. The reason for this was to avoid confusing the classifier with their partial
similarity. This might cause the large WMH detector to detect some small WMHs as

well and vice versa, but this is no problem as the final goal is to detect all WMHs.
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Training and Classification

Accurate detection of small WMHs is a complex task. This is because image noise
can mimic small lesions. In addition, readers are less reliable at identifying small
WMHs, which leads to an inaccurate ground truth for the learning algorithm to train
on.

We have chosen to use random forest” using the following parameter settings: max-
imum 20 subtrees, with \/# features features randomly selected at each node, infor-
mation gain as the tree splitting criterion, and # features as the maximum depth
of the tree. In order to be able to concentrate more on learning the concept behind

t? were run. In each iteration of Adaboost

harder samples, 5 iterations of Adaboos
a random forest was created, which concentrates more on learning the concept via
samples that were misclassified in the previous iterations. This will help the classi-
tier to perform better at labeling harder samples.

To assess the performance of Adaboost on random forest as the classifier, we also
trained on the same data a single random forest (with the same settings) as well as

a Gentleboost!%

classifier using 100 regression stumps as the weak classifiers. We
optimized the parameters of the methods considering a separate validation set of 10
subjects. The optimization criteria was either qualitative results (e.g. for vesselness
o to check if they respond well to the objects of interest) or FROC curves for classifier
parameters (e.g number of iterations in Adaboost or max number of trees in random

forest).

Second-Stage Classification

After the two likelihoods computed by the small and large WMH detectors are ac-
quired, they were subsequently merged into a single likelihood, representing the
WMHs regardless of their size. Figure 2.5 depicts a scatter plot representing the
small and large WMH likelihoods for each sample, where the positive and negative
samples are distinguished with green and red colors respectively.

As a simple approach one could threshold the two likelihood maps and merge
these results. This would correspond to discriminating the two classes with a pair of
horizontal and vertical lines on the scatter plot in Figure 2.5. It is clear, however, that
this does not result in a good separation of the two classes. Instead, we consider this
merging as another learning problem, which learns the WMH likelihood given the
likelihoods of each voxel being in a small or large WMH.

Combination Features
The likelihood of being a small WMH as well as likelihood of being a large WMH

were the two basic features used to represent each sample used for merging the like-
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Figure 2.5: 2D projection of scatter plot for the second-stage classifier samples on
small and large WMH likelihoods.

lihoods. As Figure 2.5 shows, although these two likelihoods are good features for
discrimination of WMHSs and normal WM, the separation is not perfect. By adding
more features we improved the performance of the classifier. For instance, if the clas-
sifier has the information that a voxel comes from a small-grained structure, it can
learn that it should put more weight on the small WMH likelihood. To improve the
results we included all of the features used for the detection of small WMH classifier

in the second-stage classifier features set as well.

Sampling

As mentioned earlier, we split the training dataset into two subsets of 75% (234 cases)
and 25% (78 cases) and used the first set to train the two size-separated classifiers.
We used the second subset to train the second-stage classifier. The motivation to
perform this separation was to avoid potential bias due to usage of the classification
likelihoods on the same training data. From the set of images considered for training
of the second-stage classifier, we select all the voxels annotated as WMHs in the, no
matter how small or large they are, as the positive samples. For the negative samples,
0.3% of the non-WMH voxels are uniformly selected at random, to create a relatively

balanced dataset.

Training and Classification

Adaboost was used for the second-stage classification as well, and consisted of 5
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Figure 2.6: An abstract example depicting a WMH segment A in the reference anno-
tation, and two corresponding candidate segments B, and C. The crosses show the
segments’ representative voxels. Reference standard segment A is considered as a
true positive, since it is hit by some of the candidate segments’ representative voxels.
Unlike B, C is counted as a false positive since at least one of its representative voxels

is out of the reference standard WMH annotation.
iterations of training random forest as the basic classifier.

2.2.4 Experimental Setup
Evaluation Method

In this section, we present the way we evaluate our CAD systems, focusing on detec-
tion criteria. We avoid using a voxel-based ROC or simple Jaccard measures or Dice
coefficient scores due to the fact that otherwise the results would be biased toward
larger WMHSs, since these contain more voxels. Instead we adapt an FROC analysis
to assess the system detection performance. The following details how we calculate
the FROC:

We first create candidate segments by accepting voxels with likelihoods higher than
a threshold t in the likelihood map, which is the soft classification result on each
test subject for the classifier to be evaluated. Then each resulting candidate segment
is assigned the likelihood of the most likely WMH voxel inside that candidate. At
a given analysis threshold ¢, we remove all of the candidate segments that are as-
signed likelihoods smaller than ¢" and subsequently we calculate true positive rate
and average number of false positives per patient as follows: We select inside each
candidate segment, the voxels that are the local maxima of Euclidean distance of

each voxel to the boundary of the candidate. Then these representative voxels are
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investigated to determine if they are marked as WMH in the reference standard or
not. If any of them is not marked as WMH, we consider the candidate as a false
positive. WMH segments in the reference standard that are not detected by any rep-
resentative voxels of the candidate segments, are considered to be false negatives.
Figure 2.6 illustrates an example for a better understanding of this procedure.

The FROC curve is obtained by varying the analysis threshold ¢’ between 0 and
1. Notice that the threshold t to create candidate segments from the likelihood map
is kept constant during the analysis, and is different from the analysis threshold ¢/,
which varies to generate the curve. In order to suppress the effect of t across different
methods, we fix ¢ such that the total volume of all created segments is as close as
possible to the total volume of WMHs in the reference standard.

We compute p-values for statistical significance tests as follows: We create 100
bootstraps by sampling subjects on the test set with replacements. Then the area
under the FROC curves were computed on each bootstrap for each of the two com-
pared methods. Empirical p-values were reported as the proportion of bootstraps
where the area under the FROC curve for method B was higher than A, when the
null-hypothesis to reject was “method A is no better than B”. If no such bootstrap

existed, the p-value< 0.01 was reported, representing a significant difference.

Comparisons

We evaluate the performance of the proposed method using the FROC analysis, as
introduced in the previous subsection and compare its performance to a number of
surrogates. Most importantly as two human reader annotations are available on the
test set, we compare the performance of the method to the human readers. We also
evaluate the effect of Adaboost classifier used in the method and compare its per-
formance to the cases where a single random forest or a Gentleboost classifier with
100 decision stumps as the basic classifier are trained. We also compare the results
with W2MHS, a recent publicly available automatic lesion segmentation package”’,
which applies a random forest (with 50 subtrees, \/# features features randomly
selected at each node and information gain tree splitting criterion) on texture and
intensity-variation based features.

Each of the mentioned comparisons are made separately for each size category
and all of the lesions and twice considering reader 1 and reader 2 as the reference
standard, together with the average of the two cases.

To assess the robustness of the algorithm for cases with motion artifacts, noise or
tailure at one of the preprocessing steps, the algorithm was evaluated both on cases
with and without these artifacts (see subsection I1.B.3), we also present a comparison

to performance of the independent human reader.
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As a strategy of our methodology, we train a two-stage classifier. To assess the
effectiveness of this method ingredient, we also train a single-stage classifier on the
whole dataset with the same feature set and the same type of classifier (5 iterations
of Adaboost on random forests) and compare the results.

2.3 Results

Figure 2.7(a)-(c) present the FROC curves with 95% confidence intervals for detec-
tion of large WMHs and compares the performance of the proposed method to the
performance of human readers, two other classifiers (random forest and Gentleboost
using 100 regression stumps as its weak classifiers) and the W2MHS method””. The
same experiments were repeated for detection of small WMHs as presented in Fig-
ure 2.7(d) - Figure 2.7(f). Figure 2.7(g) - Figure 2.7(i) represent the same for detection
of all WMHSs with the second-stage classifier.

An FROC comparison for the performance of the system on normal and harder
cases is depicted in Figure 2.8. Figure 2.9 investigates the effect of the size-based
separation strategy used in our research on detection of all of the WMHSs (2.9(a)) and
detection of small WMHs (2.9(b)). The differences are statistically significant in both
cases (p-value<0.01). In Figure 2.10, a number of sample FLAIR slices from three of
the patients, together with the detections of the CAD system and the annotations of
the two human readers are shown for a qualitative comparison.

After system evaluation, we had a closer look at the false positives of the system.
Observing the false positives showed that in a considerable proportion of cases, the
underlying tissue was suspicious. Based on this, we asked an expert neurologist to
either accept or reject false positives as true WMHs on all of test cases. As a result, on
average 15.1 false positives per patient and in a subject more than 50 false positives
were accepted.

To show the size specific performance of CAD system, we performed a size-based

analysis of TP rate, which is depicted in Figure 2.11.

2.4 Discussion

2.4.1 Data Acquisition Matters

In order to train and evaluate our algorithm, we made use of a dataset containing
362 MRI scans of SVD patients. Use of hundreds of subjects for the development of
these algorithms is not seen in other studies of WMH detection. This large dataset

has aided in better generalization and made it possible to avoid overfitting of the
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Figure 2.7: FROC curves with 95% confidence intervals that compare the performance of

different classifiers and human readers on detection of large (a, b, ), small (d, e, f,) and all

of the WMHs (g, h, i). First and second columns are evaluated considering reader 1 and

reader 2 as the reference standard. The third column represents the average.

model to the noise patterns. On the other hand the acquisitions used in this study

were made in 2006 on a 1.5 Tesla MR machine and the FLAIR acquisitions in particu-

lar have a relatively high slice thickness of 5 mm with 1 mm of inter-slice gap. More

modern acquisition protocols together with higher field strength MR systems lead to

a smaller slice thickness. This reduces the partial volume effect observed in smaller

WMHs.

Our algorithm has been developed to work slice based because of the thicker FLAIR
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Figure 2.8: FROC curves representing performance of the proposed CAD system for

normal cases (set A) compared to the set of harder cases (set B), with Reader 1 anno-

tations as the reference standard.

slices. Iso-voxel, fine resolution, FLAIR scans enable the use of 3D features. The

same methodology can be used with updated features to fully benefit from these 3D

acquisitions.

Furthermore, a more accurate ground truth, especially on smaller WMHs, could

have helped a more accurate evaluation. Such improvements on the ground truth,

can be achieved using a consensus of readers or including more readers, though this

might be expensive on large datasets.

2.4.2 Single or Two Stage Classification?

There were two method ingredients in our approach that resulted in a competitive

performance for the single stage classifier: First the set of features used for the single
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Figure 2.9: FROC curves that compare the performance of the combined small- and
large lesions classification results versus a single stage classifiers for detection of all
and small WMHs (smaller than 3 mm in in-plane effective diameter), considering

reader 1 as the reference standard.

classifier includes features optimized for detection of small WMHs, and second the
usage of Adaboost on top of random forests emphasizes the detection of harder sam-
ples. Even though our results show that the single stage classifier can be considered
as a reliable option, the two-stage classification scheme results in a better detection
of small WMHs. Considering the true positive rates in range of 0.75 to 0.85, which
seems reasonable to be used in practice, the two-stage classification scheme on av-
erage results in 13% less false positives for every detection point in the same true
positive rates in the mentioned range, though they perform similarly for TP rates
below 50%. Also p-value of <0.01 showed a statistically significant improvement.

Noting the heterogeneity of the appearances of smaller and larger WMHs, the rep-
resentation of lesions would be scattered over the feature space resulting in a highly
non-linear problem for a single classifier. By training specified classifiers for the
two heterogeneous categories and training the second-stage classifier given the like-
lihoods of each category, the non-linearity of the problem is reduced on the new
feature space and therefore we expect the two-stage classification scheme to result in

an improvement, as observed empirically by the results presented in Figure 2.9.
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(a) FLAIR images with- (b) Likelihood maps pro- (c) Annotations by hu-(d) Annotations by hu-
out annotations vided by CAD man reader 1 man reader 2

Figure 2.10: A demonstration of our CAD system detection together with human

readers annotations

2.4.3 Accurate Detection of Smaller Lesions Is More Challenging

As the comparison of the detection curves for small and large WMHs in Figure 2.7
suggests, detection of small WMHs is a much more complicated task for which we
hypothesize the following reasons: First of all the partial volume effect causes small
WMHs to appear in less contrast to normal white matter. Second, noise in the image
might appear similar to small WMHs. And finally, small WMHs are much more
prone to be missed by the human readers compared to large WMHs (see Figure 2.1).
This results in an inconsistent training dataset where some true small WMHs are

labeled as negative samples, which might be confusing for the classifier.
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Figure 2.11: True positive rate for different WMH sizes (true positive rate of 0.75)

2.4.4 Comparison to Other Methods

A multitude of automated detection algorithms for WMHs exists, but since most of
the current automated approaches are tuned to optimize segmentation performance
according to Jaccard or Dice scores, smaller WMHs often go undetected in these ap-
proaches.

Generalized test datasets to compare performance of different WMH segmentation/de-
tection algorithms do not exist for diseases other than multiple sclerosis. Lesions in
MS are mostly different in their size, appearance and localization from lesions that
are seen in SVD. Therefore it is not desirable to use existing test databases (such
as the MICCAI MS lesion segmentation challenge 2008 or the ISBI 2015 Longitudi-
nal MS Lesion Segmentation Challenge), nor would it be fair to expect compatible
results from algorithms designed for lesions caused by different underlying pathol-
ogy. To provide some results, we compare the performance of our algorithm with
the publicly available W2MHS algorithm (Figure 2.7).

2.4.5 On Potential Importance of Smaller Lesions

Several important ingredients of the proposed method are optimized for an accurate
detection of all-size lesions, large ones as well as small ones. The main importance of
detecting these small WMHs is their etiological importance. By detecting these small
lesions it is possible to follow WMH growth and progression in follow-up studies,
even per location, and with that gain more knowledge about the development of

WDMHs. It might be the case that intervening at a relatively early stage could prevent
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progression of small WMHs, possibly averting progression in clinical symptoms.
This mechanism is still speculative and needs further investigation. These future
investigations rely on the accurate detection and localization of small WMHs, as
presented in this paper.

2.5 Conclusions

In this paper, a fully automated system for detection of WMHs was presented that
uses a two-stage classification approach, based on combining two size-specific clas-
sifiers. Experiments show that the proposed CAD system performs close to human
readers. Ingredients of the method were chosen to enable the CAD system to ac-
curately detect small WMHs as well as the larger ones. This includes the set of fea-
tures, classifier type and the two-stage classification scheme based on small and large
WMH detectors.

The effect of these factors were investigated and shown to be contributing to bet-
ter detection of WMHs. Our system reaches a true positive rate of 0.80 with 47 and 27
false positives per volume using reader 1 and reader 2 as the reference standard re-
spectively. The real performance of the classifier could be potentially better if a more

accurate reference standard, especially on detection of small WMHs, was available.
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Abstract

The anatomical location of imaging features is of crucial importance for accurate di-
agnosis in many medical tasks. Convolutional neural networks (CNN) have had
huge successes in computer vision, but they lack the natural ability to incorporate
the anatomical location in their decision making process, hindering success in some
medical image analysis tasks.

In this paper, to integrate the anatomical location information into the network, we
propose several deep CNN architectures that consider multi-scale patches or take
explicit location features while training. We apply and compare the proposed archi-
tectures for segmentation of white matter hyperintensities in brain MR images on a
large dataset. As a result, we observe that the CNNs that incorporate location infor-
mation substantially outperform a conventional segmentation method with hand-
crafted features as well as CNNs that do not integrate location information. On a
test set of 50 scans, the best configuration of our networks obtained a Dice score of
0.792, compared to 0.805 for an independent human observer. Performance levels of
the machine and the independent human observer were not statistically significantly
different (p-value=0.06).
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3.1 Introduction

White matter hyperintensities (WMH), also known as leukoaraiosis or white matter
lesions are a common finding on brain MR images of patients diagnosed with small
vessel disease (SVD)!"!, multiple sclerosis®!, Parkinsonism®, stroke®, Alzheimers
disease®® and Dementia®>. WMHs often represent areas of demyelination found in
the white matter of the brain, but they can also be caused by other mechanisms
such as edema. WMHs are best observable in fluid-attenuated inversion recovery
(FLAIR) MR images, as high value signals*. The prevalence of WMHs among SVD
patients has been reported to reach up to 95% depending on the population stud-
ied and the imaging technique used®. Studies have reported a relationship between
WMH severity and other neurological disturbances and symptoms including cog-

212 oait dysfunction®, hypertension'® as well as depression® and

nitive decline
mood disturbances®. It has been shown that using a more accurate WMH volumet-
ric assessment, a better association with clinical measures of physical performance

and cognition is achieved '®.

Accurate quantification of WMHs in terms of total volume and distribution is
believed to be of clinical importance for prognosis, tracking of disease progression
and assessment of the treatment effectiveness'®. However, manual segmentation of
WDMHs is a laborious time consuming task that makes it infeasible for larger datasets
and in clinical practice. Furthermore, manual segmentation is subject to considerable

inter- and intra-rater variability?*.

In the last decade, many automated and semi-automated algorithms have been
proposed that can be classified into two general categories. Some methods use super-
vised machine learning algorithms, often using hand-crafted features?677.829,105-112
or more recently with learned representations'**!7. This is while other methods use
unsupervised approaches® 717374 to cluster WMHs as outliers or model them with
additional classes. Although a multitude of approaches has been suggested for this
problem, a truly reliable fully automated method that performs as good as human

readers has not been identified 88,

52,118

Deep neural networks are biologically plausible learning structures, inspired

k119120 3nd have so far claimed human level or

by early neuroscience-related wor
super-human performances in several different domains!?'"'%. Convolutional neu-
ral networks (CNN)!%, perhaps the most popular form of deep neural networks,
have attracted enormous attention from the computer vision community since Alex
Krizhevsky’s network'” won the Imagenet competition'?® by a large margin. Al-
though the initial focus of CNN methods was concentrated on image classification,

soon the framework was extended to cover segmentation as well. A natural way to



40 Location-Sensitive Deep Learning for White Matter Hyperintensity Segmentation

apply CNNSs to segmentation tasks is to train a network in a sliding-window setup
to predict the label of each pixel/voxel considering a local neighborhood, which is
usually referred to as a patch'*!'#-13! Later fully convolutional neural networks

were proposed to computationally optimize the segmentation process %1%

Deep neural networks have recently been widely used in many medical image
analysis domains including lesion detection, image segmentation, shape modeling
and image registration®34. In particular on neuroimaging, several studies are pro-
posed using CNNs for brain extraction!®, tissue and anatomical region segmenta-

tion %141 tumor segmentation'*>*°, lacune detection*®, microbleed detection 47148,

and brain lesion segmentation 214117,

In many bio-medical segmentation applications, including the segmentation of
WMHs, anatomical location information plays an important role for an accurate
classification of voxels®#86%149 (gee Figure 3.1). In contrast, in commonly used
segmentation benchmarks in the computer vision community, such as general scene
labeling and crowd segmentation, it is normally not a valid assumption to consider
pixel/voxel spatial location as an important piece of information. This explains why
the literature lacks enough studies investigating ways to integrate spatial informa-
tion into CNNSs.

In this study, we train a number of CNNs to build systems for an accurate fully-
automated segmentation of WMHs. We train, validate and evaluate our networks
with a large dataset of more than 500 patients, that enables us to learn optimal values
for millions of weights in our deep networks. In order to feed the CNN with location
information, it is possible to incorporate multi-scale patches or add an explicit set of
spatial features to the network. We evaluate and compare three different strategies
and network architectures for providing the networks with more context/spatial lo-
cation information. Experimental results suggest not only our best performing net-
work outperforms a conventional segmentation method with hand-crafted features
with a considerable margin, but also its performance does not significantly differ

from an independent human observer.

To summarize, the main contributions of the paper are the following: 1) Compar-
ing and discussing the different strategies for fusing multi-scale information within
a CNN on the WMH segmentation domain. 2) Integrating location features with the
CNN in the same pass as the network is being trained. 3) Achieving results that are

comparable to that of a human expert on a large set of independent test images.
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Table 3.1: MR imaging protocol specification for the T1 and FLAIR modalities.

Modality TR/TE/TI Flip angle Voxelsize  Interslice gap
T1 2250/3.68/850 ms  15° 1.0x1.0x1.0 0
FLAIR 9000/84/2200 ms  15° 1.0x1.2x5.0 1mm

0.4

0.05

Figure 3.1: A pattern is observable in WMHSs occurrence probability map.

3.2 Materials

3.2.1 Data

The research presented in this paper uses data from a longitudinal study called the
Radboud University Nijmegen Diffusion tensor and Magnetic resonance imaging
Cohort (RUN DMC) %!, Baseline scanning was performed in 2006. The patients were
rescanned in 2011/2012 and currently a third follow-up is being acquired.

Subjects

Subjects for the RUN DMC study were selected at baseline based on the follow-

101: (a) aged between 50 and 85 years (b) cerebral SVD on neu-

ing inclusion criteria
roimaging (appearance of WMHs and/or lacunes). Exclusion criteria comprised:
presence of (a) dementia (b) parkinson(-ism) (c) intracranial hemorrhage (d) life ex-
pectancy less than six months (e) intracranial space occupying lesion (f) (psychiatric)
disease interfering with cognitive testing or follow-up (g) recent or current use of

acetylcholine-esterase inhibitors, neuroleptic agents, L-dopa or dopa-a(nta)gonists
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Figure 3.2: An example of negative (top row) and positive (bottom row) samples in
three scales (from left to right) 32x32, 64x64 and 128 x128 on the FLAIR image. The

two larger scales are down sampled to 32x32.

(h) non-SVD related WMH (e.g. MS) (i) prominent visual or hearing impairment (j)
language barrier and (k) MRI contraindications. Based on these criteria, MRI scans

of 503 patients were taken at baseline.

Magnetic resonance imaging

The machine used for the baseline was a single 1.5 Tesla scanner (Magnetom Sonata,
Siements Medical Solution, Erlangen, Germany). Details of the imaging protocol are
listed in Table 3.1.

Reference annotations

Reference annotations were created in a slice by slice manner by two experienced
raters, manually contouring hyperintense lesions on FLAIR MRI that did not show
corresponding cerebrospinal fluid like hypo-intense lesions on the T1 weighted im-
age. Gliosis surrounding lacunes and territorial infarcts were not considered to be
WMH related to SVD ™. One of the observers (observer 1) manually annotated all of
the cases. 50 of these 503 images were selected at random and were annotated also

by another human observer (observer 2).

3.2.2 Preprocessing

Before supplying the data to our networks, we first pre-processed the data with the

following four steps:
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Multi-modal registration

Due to possible movement of patients during scanning, the image coordinates of
the T1 and FLAIR modalities might not represent the same location. Thus we trans-
formed the T1 image to align with the FLAIR image in the native space using FSL-
FLIRT®? implementation of rigid registration with trilinear interpolation and mutual
information optimization criteria. Also to obtain a mapping between patient space
and an atlas space, the ICBM152 atlas®® was non-linearly registered to each patient
image using FSL-FNIRT'!. The resulting transformations were used to bring z, y
and z atlas space maps into the patient space.

Brain extraction

In order to extract the brain and exclude other structures, such as skull, eyes, etc., we
apply FSL-BET* on T1 images, because this modality has the highest resolution. The
resulting mask is then transformed using registration transformation and is applied
to the FLAIR images.

Bias field correction

Bias field correction is another necessary step due to magnetic field inhomogeneity.
We apply FSL-FAST#!, which uses a hidden Markov random field and an associated
expectation-maximization algorithm to correct for spatial intensity variations caused

by RF inhomogeneities.

Intensity normalization

Apart from intensity variations caused by the bias field, intensities can also vary
between patients. Thus we normalize the intensities per patient to be within the
range of [0, 1].

3.2.3 Training, validation and test sets

From the 503 RUN DMC cases, we removed a number of cases that were extremely
noisy or had failed in some of the preprocessing steps including brain extraction and
registration, which left us with 420 out of 453 cases with single annotations. From 420
cases annotated by one human observer, we select 378 cases for training the model
and the remaining 42 cases for validation and parameter tuning purposes. 50 cases
that were annotated by both human observers as independent test set. It should be

noted that the set of 50 images used as the test set also contained low quality images
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Figure 3.3: Patch preparation process and different proposed CNN architectures. The
links between the set of convolutional layers represent a weight sharing policy among

the streams.

or imperfect preprocessing, however we avoided filtering any of the images out so
that the experimental evaluation would better reflect the performance of the pro-
posed method on the real (often low quality) data.

Medical datasets usually suffer from the fact that pathological observations are sig-
nificantly less frequent compared to healthy observations, which also holds for our
dataset. Given this, a simple uniform sampling may cause serious problems for the

learning process!™

, as a classifier that labels all of the samples as normal, would
achieve a high accuracy. To handle this, we undersample the negative samples to
create a balanced dataset. We randomly select 50% of positive and select an equal
number of negative samples from normal voxels of all cases. This sampling proce-
dure resulted in datasets consisting of 3.88 million and 430 thousand samples for

training and validation sets respectively.
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3.3 Methods

3.3.1 Patch preparation

From each voxel neighborhood, we extract patches with three different sizes: 32x32,
64 x64 and 128x128. To reduce the computational costs, we down sample the larger
two scales to 32x32. Resulting patches for this procedure are demonstrated in Figure
3.2, for a negative and a positive sample, obtained from a FLAIR image. We included
these three patches for both the T1 and FLAIR modalities for each sample. This
results in a set of patches in three scales s;, s, and s3, each consisting of two patches
from T1 and FLAIR, as depicted in Figure 3.3.

3.3.2 Network architectures
Single-scale (SS) model

The simplest CNN model we applied to our dataset was a CNN trained on patches
from a single scale (with patches of 32x32). The top architecture in Figure 3.3 shows
the architecture of our single-scale deep CNN. This network, which is a basis for
the other location sensitive architectures, consists of four convolutional layers that
have 20, 40, 80 and 110 filters of size 7x7, 5x5, 3x3, 3x3 respectively. We do not

153 which is not desired in

use pooling since it results in a shift-invariance property
segmentation tasks. Then we apply three layers of fully connected neurons of size
300, 200 and 2. Finally the resulting responses are turned into probability values

using a softmax classifier.

Multi-scale early fusion (MSEF)

In many cases, it is impossible to correctly classify a 32x32 patch just from its ap-
pearance. For instance, only looking at the small scale positive patch in Figure 3.2,
it is hard to distinguish it from cortex tissue. In contrast, given the two larger scale
patches, it is fairly easy to identify it as WMH tissue near the ventricles. Further-
more there is a trade-off between context capturing and localization accuracy. Al-
though more context information might be captured with a larger patch-size, the
ability of the classifier to accurately localize the structure in the center of the patch is
decreased'®. This motivates a multi-scale approach that has the advantages of the
smaller and larger size patches. A simple and intuitive way to train a multi-scale
network is to accumulate the different scales as different channels of the input. This
is possible since the larger scale patches were down sampled to 32x32. The second

top network in Figure 3.3 illustrates this.
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Multi-scale late fusion with independent weights (MSIW)

Another possibility to create a model with multi-scale patches is to train indepen-
dent convolutional layers for each scale, fusing the representations of each scale and
taking them into more fully connected layers. As can be observed in Figure 3.3, in
this architecture each scale has its own fully connected layer. These are concatenated
and fed into the joint fully connected layers. The main rationale behind giving each
scale stream its own fully connected layer is that this incurs less weights compared
to the approach that firsts merges the feature maps and then fully connects it to the

first layer of neurons.

Multi-scale late fusion with weight sharing (MSWS)

The first convolutional layers of a CNN typically detect various forms of edges, cor-
ners and other basic structuring elements. Since we do not expect that these basic
building blocks differ much among the different scale patches, a considerable num-
ber of filters might be very similar in the three separate convolutional layers learned
for different scales. Thus a potentially efficient strategy to reduce the number of
weights and consequently to reduce the overfitting, is to share the convolutional fil-
ters among the different scales. As illustrated in Figure 3.3, each of the scales from
the different patches are separately passed through the same set of convolutional
layers and each get described with separate feature maps. These feature maps are
then connected to separate fully connected layers and are merged later, similar to the
MSIW approach.

Integrating explicit spatial location features

The main aim for considering patches at different scales is to let the network learn
about the spatial location of the samples it is observing. Alternatively we can pro-
vide the network with such information, by adding explicit features describing the
spatial location. One possible place to add the location information is the first fully
connected layer after the convolutional layers. All the location features are normal-
ized per case to be within the range of [0, 1]. As the response of other neurons in the
same layer that the location features are integrated with might have a different scale,
all the eight features are scaled with a coefficient a as a parameter of the method.
We tuned the best value for a as a parameter by validation. The possibility to add
spatial location features is not restricted to the single-scale architecture. It is also fea-
sible to integrate these features into the three possible architectures for multi-scale
approaches. The orange parts in Figure 3.3 illustrate this procedure.

There are eight features that we utilize to describe the spatial location: the x, y and
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z-coordinates of the corresponding voxel in the MNI atlas space, in-plane distances
from the left ventricle, right ventricle, brain cortex and midsagittal brain surface as

well as the prior probability of WMH occurring in that location®.

3.3.3 Training procedure

For learning the network weights, we use the stochastic gradient descent algorithm'>*,
with mini-batch size of 128 and a cross-entropy cost. We also utilize the RMSPROP
algorithm ! to speed up the learning process by adaptively changing the learning
rate for each parameter. The non-linearity applied to neurons is a rectified linear
unit to prevent the vanishing gradient problem'®. As random weight initialization
is important to break the symmetry between the units in the same hidden layer'”,
the initial weights are drawn at random using the Glorot method'™®. Since CNNs
are complex architectures, they are prone to overfit the data very early. Therefore we

use drop-out regularization’”

with 0.3 probability on all fully connected layers of
the networks. We pick the resulting network from an epoch with the highest valida-

tion A, as the final model.

3.4 Experimental Evaluation

For characterization of WMHs, several different methods have been proposed in this
study, some of which only use patch appearance features, while others use multi-
scale patches or explicit location features to the network or both. In order to obtain
segmentations, we apply the trained networks to classify all the voxels inside the
brain mask in a sliding window fashion. A comparison between the performance of
the mentioned methods, together with a comparison to performance of an indepen-
dent human observer and a conventional method with hand-crafted features would
be insightful.

Integrating the location information into the first fully connected layer, as depicted
in the architectures Figure 3.3, is only one of the possibilities. We can alternatively
add the spatial location features to one layer before or after, i.e. to the responses from
the last convolutional layer and to the second fully connected layer. To evaluate the
relative performance of each possibility, we also train single-scale networks with the
two other possibilities and compare them to each other. In order to provide infor-
mation on how much effect the dataset size has on the performance of the trained
network, we present and compare the results of a MSWS+Loc network trained with
100%, 50%, 25%, 12.5% and 6.25% of the total training images.



48 Location-Sensitive Deep Learning for White Matter Hyperintensity Segmentation

3.4.1 Metrics

The Dice similarity index, also known as the Dice score, is the most widely used
measure for evaluating the agreement between different segmentation methods and

their reference standard segmentations.®#. It is computed as

2xTP
Dice — .
T EPYFN+2xTP 3.1)

where the value varies between 0 for complete disagreement, and 1 representing
complete agreement between the reference standard and the evaluated segmenta-
tion. A Dice similarity index of 0.7 or higher is usually considered a good segmen-
tation in the literature®. To create binary masks out of probability maps resulting
from CNNs, we find an optimal value as a threshold that maximizes the overall Dice
score on the validation set. The optimal thresholds are computed separately for each
method. We also present test set receiver operating characteristic (ROC) curves and
validation set area under the ROC curve (A.). For computing each of these mea-
sures, we only consider the voxels inside the brain mask, to avoid taking easy voxels
belonging to the background into account.

For the statistical significance test, we created a 100 boot-straps by sampling 50 in-
stances with replacement. Then the Dice scores were computed on each bootstrap
for each of the two compared methods. Empirical p-values were reported as the pro-
portion of bootstraps where the Dice score for method B was higher than A, when
the null-hypothesis to reject was “method A is no better than B”. If no such bootstrap

existed, the p-value<0.01 was reported, representing a significant difference.

3.4.2 Conventional segmentation system

In order to evaluate the relative performance of the proposed deep learning sys-
tems, we also train a conventional segmentation system, using hand-crafted fea-

tures®.

The set of hand-crafted features consists of 22 features in total: intensity
features including FLAIR and T1 intensities, second order derivative features in-
cluding multi-scale Laplacian of Gaussian (¢=1,2,4 mm), multi-scale determinant of
Hessian (t=1,2,4 mm), vesselness filter (c=1 mm), a multi-scale annular filter (t=1,2,4
mm), FLAIR intensity mean and standard deviation in a 16x16 neighborhood, as
well as the same 8 location features that were used in the previous subsection. We

use a random forest classifier with 50 subtrees to train the model.
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Table 3.2: Performance comparison of different CNN architectures based on vali-
dation set A, and test set Dice score considering observer 1 and observer 2 as the

reference standard.

Without location features With location features
Method Validation Test set Test set Validation Test set Test set

set A, Dice (obs1) Dice (obs2) set A, Dice (obsl) Dice (obs2)
SS 0.9939 0.731 0.729 0.9972 0.781 0.778
MSEF 0.9947 0.762 0.752 0.9966 0.777 0.769
MSIW  0.9966 0.778 0.768 0.9972 0.795 0.787
MSWS  0.9965 0.773 0.760 0.9973 0.792 0.783

Table 3.3: A performance comparison between conventional method, MSWS+Loc

architecture, and human observers.

Method Dice (obs1) Dice (obs2)
Conventional 0.716 0.699
MSWS+Loc 0.792 0.783
observer 1 - 0.805

observer 2 0.805 -

3.5 Experimental Results

Table 3.2 represents a comparison on validation set A, and test set Dice score, for
each of the methods, once without and another time with addition of spatial location
features, considering observer 1 as the reference standard. Table 3.3 compares the
performance of the conventional segmentation method, our late fusion multi-scale
architecture with weight sharing and location information (MSWS+Loc), and the two
human observers on the independent test set, with each observer as the reference
standard. p-values were computed as a result of patient-level boot-strapping on the
test set and are presented in Table 3.4.

Regarding the different options for integration of the location information in the
network, Table 3.5 compares the performance of these options on the validation and
training sets.

Figure 3.4(a) shows the ROC curves for some of the trained CNN architectures
and compares them to the conventional segmentation method and the independent
human observer. The ROC curves have been cut to show only low false positive rates
that are of interest for practical use. In order to preserve readability of the figures, we

only compare the most informative methods. Figure 3.4(b) shows the Dice similarity



50 Location-Sensitive Deep Learning for White Matter Hyperintensity Segmentation

Table 3.4: Statistical significance test for pairwise comparison of the methods Dice
score. p;; indicates the p-value for the null hypothesis that method i is better than
method j.

Method MSWS SS+Loc  MSWS+Loc Ind. Obs.

SS <0.01 <0.01 <0.01 <0.01
MSWS - <0.01 <0.01 <0.01
SS+Loc - - 0.03 0.03
MSWS+Loc - - - 0.06

Table 3.5: A performance comparison of the single-scale architecture with different
possible locations to add the spatial location information. Abbreviations: last convo-
lutional layer (LCL), first fully connected layer (FFCL), second fully connected layer
(SFCL).

Method Validation set A, Test set Dice

LCL 0.9964 0.763
FFCL 0.9971 0.781
SFCL 0.9967 0.778

scores as a function of the binary masking threshold. It also compares them to the
Dice similarity measure between the two human observers. 95% confidence intervals
are depicted for each curve, as a result of bootstrapping on patients. The effect of the

training dataset size can be observed in Table 3.6 and Figure 3.5.

3.6 Discussion

3.6.1 Contribution of larger context and location information

Comparing the performance of the SS and SS+Loc approaches, as presented in the
first row of Table 3.2, a significant difference in Dice score is observable (p-value
< 0.01). This points us to the fact that a knowledge about where the input patch
is located can substantially improve WMH segmentation quality of a CNN. A sim-
ilar significant difference is observable when comparing performance measures of
SS and MSWS methods (p-value < 0.01). This implies that by using a multi-scale
approach, a CNN can learn about context information quite well. Considering the
better performance of SS+Loc compared to MSWS, we can infer that the learning of

location and large scale context from multi-scale patches is not as good as adding
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Figure 3.4: Integration of spatial location information fills the gap between perfor-
mance of a normal CNN and human observer. (a) An ROC comparison of different
CNN methods, a conventional segmentation method and independent human ob-
server, considering observer 1 as the reference standard. (b) A comparison of different
methods on Dice score as a function of binary masking threshold. The light shades

around the curves indicate 95% confidence intervals with bootstrapping on patients.

explicit location information to the architecture. It should be noted that for the task
at hand, high resolution information of the larger scale patches does not contribute
to a better performance. However, in other tasks that require large contextual infor-

mation at higher resolutions, other strategies could be utilized '%°.

3.6.2 Early fusion vs. late fusion, independent weights vs. weight

sharing

As the experimental results suggest, among the different multi-scale fusion architec-
tures, early fusion shows the least improvement over the single-scale approach. The
related patch voxels of different scales, do not have a meaningful correspondence.
Given the fact that the convolution operation in the first convolutional layer sums up
the responses on each scale, we assume that the useful information provided by dif-
ferent scales is washed out too early in the network. In contrast, the two late fusion
architectures show comparable good performance, however in general, since the late
fusion architecture with weight sharing is a simpler model with less parameters to

be learned, one might prefer to use this model.
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Figure 3.5: Test Dice as a function of training set size.

Table 3.6: Test Dice as a function of training set size.

Training set size 23 47 94 189 378

Test set Dice 0.753 0.756 0.770 0.788 0.792

3.6.3 Comparison to human observer and a conventional method

Shown by Table 3.3, MSWS+Loc substantially outperforms a conventional segmen-
tation method, with Dice score of 0.792 compared to 0.716 (p-value<0.01). Further-
more, the Dice score of MSWS+Loc method closely resembles the inter-observer vari-
ability, which implies that the segmentation provided by MSWS+Loc approach is as
good as the two human observers. Also the statistical test does not show a significant

advantage of the independent observer compared to this method (p-value = 0.06).

3.6.4 A visual look into the results

Figures 3.6-3.8 show some qualitative examples. Figure 3.6 contains two sample
cases, where the location and larger context information leads to a better segmenta-
tion. As evident from the first sample, the single-scale CNN falsely segments an area
on septum pellucidum, which also appears as hyperintense tissue. These false pos-
itives can be avoided by considering location information. A second sample shows
improvements on FNs of the single-scale method.

Figure 3.7 illustrates an instance of a prevalent class of false positives of the sys-
tem, which are the hyperintense voxels around the lacunes. Since the model has not

been trained on so many negative samples similar to this, the distinction between
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(a) (b) (c) (d)

Figure 3.6: Two sample cases of segmentation improvement by adding location infor-
mation to the network. (a) FLAIR images without annotations. (b) Segmentation by
human observer 1. (c) Segmentation by SS method. (d) Segmentation by MSWS+Loc
method.

(a) (b) (c) (d)

Figure 3.7: Gliosis around the lacunes is a prevalent type of false positive segmenta-
tion. (a) FLAIR images without annotations. (b) Segmentation by human observer 1.
(c) Segmentation by human observer 2. (d) Segmentation by MSWS+Loc method.

WMH and hyperintensities around lacunes is not well learned by the system. An
obvious solution is to extensively include the lacunes surrounding voxels as nega-

tive samples in the training dataset.

As an example of missed lesions by human observers, Figure 3.8 shows a small
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(a) (b) (c) (d)

Figure 3.8: A sample case with a small lesion missed by the two human observers.
(a) FLAIR image without annotations. (b) Segmentation by human observer 1. (c)

Segmentation by human observer 2. (d) Segmentation by MSWS+Loc method.

lesion on the right temporal lobe, missed by both human observers, where it is de-
tected by MSWS+Loc method. Another sample of such missed lesions can be ob-
served in the second sample of Figure 3.6, on the right hemisphere frontal lobe.
Based on similar observations, we can assume that some of the false positives are
possibly small lesions missed by one or both of the observers. Therefore there may
be a chance that the real performance of the system is better than reported, but it

would require more research to investigate this.

3.6.5 Integration of location features

For integration of explicit spatial location information into the CNN, there are several
possibilities that were investigated in this study. The results as represented in Table
3.3, suggest that adding the spatial location features to the first fully connected layer
results in a significantly better performance. Adding them to around 35K features as
the responses of the last convolutional layer, almost makes the eight location features
insignificant among so many representation features. At the other extreme, although
integrating the location features into the second fully connected layer does not suffer
from this problem, but leaves less flexibility for the network to consider location
features for the discrimination to be learned. The first fully connected layer seems to
be the best option, where the appearance features provided by the last convolutional
layer are already considerably reduced, and at same time the more fully connected

layer provides more flexibility for an optimal discrimination.
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3.6.6 Two-stage vs. single-stage model

As shown in the results, integrating location information into a CNN can play an im-
portant role in obtaining an accurate segmentation. We integrate the features while
we train our network to learn the representations. Another approach is to perform
this task in two stages; first training an independent network that learns the repre-
sentations, and later training a second classifier that takes the output features of the
first network, integrated with location or other external features (as followed in'®!
for instance). The first approach, which is followed in this study, seems more rea-
sonable as the set of learned filters without location information could differ from
the optimal set of filters given the location information. The two-stage system lacks
this information and might devote some of the filters for capturing of location that

are redundant given the location features.

3.6.7 2D vs. 3D patches

In this research, we sample 2D patches from each of the two modalities (T1 and
FLAIR), while one might argue that considering consecutive slices and sampling 3D
patches from each image modality could provide useful information. Given the slice
thickness of 5 mm with a 1 mm inter-slice gap in our dataset, the consecutive slices
do not highly correspond to each other. Furthermore incorporation of 3D patches
extensively increases the computational costs at both the training and the segmen-
tation time. These motivated us to use 2D patches. In contrast, for datasets with

isotropic or thin slice FLAIR images, 3D patches might be very useful.

3.6.8 Fully convolutional segmentation network

While we have trained our networks in a patch-based manner, it does not restrict
us from reforming the fully connected layers of the trained network into convolu-
tional layer counterparts at the segmentation time. This can be done by replacing
the first fully connected layer by a convolutional filter of size n x n (n is the size of
the feature map after the last convolutional layer) and the next dense layers with 1x1
convolutions that perform exactly the same functionality as the fully connected do,

however implemented with convolutions!®

. This would speed the segmentation
up, since convolutions can get larger input images, make dense predictions for the
whole input image and avoid repetitive computations. The current implementation
uses a patch-based segmentation, as we found it fast enough in the current experi-
mental setup (~3 minutes for the multi-scale and ~1.5 minutes for the single-scale

architectures per case on a Titan X card). It should also be noticed that a patch-based
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training, compared to the fully convolutional training, has the advantages that it can
be much less memory demanding and is easier to optimize in highly imbalanced
classification problems due to the possibility of the class-specific data sampling and

augmentation.

3.7 Conclusions

In this study we showed that location information can have a significant added value
when using CNNs for WMH segmentation. While for this task, making use of CNNs,
not only a better performance compared to conventional segmentation method was
achieved, we approached the performance level of an independent human observer

with incorporation of location information.

Acknowledgements

This work was supported by a VIDI innovational grant from the Netherlands Or-
ganisation for Scientific Research (NWO, grant 016.126.351). The authors also would
like to acknowledge Lucas J.B. van Oudheusden and Koen Vijverberg for their con-

tributions to this study.



Non-uniform Patch Sampling for White

Matter Hyperintensity Segmentation

M. Ghafoorian, N. Karssemeijer, T. Heskes, LW.M. van Uden, E-E. de Leeuw, E.

Marchiori, B. van Ginneken and B. Platel

Original title: Non-uniform Patch Sampling with Deep Convolutional Neural

Networks for White Matter Hyperintensity Segmentation

Published in: IEEE International Symposium on Biomedical Imaging, 1414-1417,
2016



58  Non-uniform Patch Sampling for White Matter Hyperintensity Segmentation

Abstract

Convolutional neural networks (CNN) have been widely used for visual recogni-
tion tasks including semantic segmentation of images. While the existing methods
consider uniformly sampled single- or multi-scale patches from the neighborhood
of each voxel, this approach might be sub-optimal as it captures and processes un-
necessary details far away from the center of the patch. We instead propose to train
CNNs with non-uniformly sampled patches that allow a wider extent for the sam-
pled patches. This results in more captured contextual information, which is in par-
ticular of interest for biomedical image analysis, where the anatomical location of
imaging features are often crucial. We evaluate and compare this strategy for white
matter hyperintensity segmentation on a test set of 46 MRI scans. We show that the
proposed method not only outperforms identical CNNs with uniform patches of the
same size (0.780 Dice coefficient compared to 0.736), but also gets very close to the

performance of an independent human expert (0.796 Dice coefficient).
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White matter hyperintensities (WMH) are a common finding on brain MR images
of patients diagnosed with small vessel disease (SVD) and several other neurological
disorders. WMHs often represent areas of demyelination found in the white matter
of the brain and are best observable in fluid-attenuated inversion recovery (FLAIR)
MR images, as high value signals*.

As manual segmentation of WMHs is laborious and subject to inter- and intra-rater
variability, in the past decade a multitude of algorithms have been proposed to au-
tomate this process. Most of these methods use either an unsupervised clustering
of WMHs as outliers or a supervised learning approach with hand-crafted features.
None of these methods has been accurate enough to be considered as a stand-alone
system®.

Since the past few years convolutional neural networks (CNN) have been reported
to be the state of the art in most of visual recognition tasks and in particular in image
classification and object detection. A popular way to extend image classifying CNNs
for a segmentation problem is to train them to predict the label for each voxel given a
small patch representing a local neighborhood of that voxel'**. Nonetheless the cho-
sen patch size might impose natural limitations hindering success of such segmen-
tation systems in many medical image analysis applications, where the anatomical
location of the imaging features is of crucial importance; small patches lack enough
contextual information, while larger patch sizes, apart from higher computational
costs, decrease the localization accuracy '**. Figure 4.1 illustrates this.

A way to address this problem is to break the unnecessary assumption of uniform
patch sampling. The human visual system also non-uniformly perceives the world,
with a lot of details at the focal point but a compact contextual representation from
the surroundings. Inspired by the way our natural visual system performs, we pro-
pose to take non-uniformly sampled patches to train deep CNNs and we apply such
a system for segmentation of WMHSs, where a comprehensive inclusion of contex-
tual information matters for a decent segmentation®. We show that this sampling

approach outperforms similar networks with uniform sampling.

41 Methods

4.1.1 Non-uniform patch sampling

Suppose P, j is a n x n patch that we want to non-uniformly sample to represent a
local neighborhood of voxel coordinate (7, j, k) from an image /. Then we have:

n

) =1 +1j+m k) (4.1)

Porla+ [5).0+
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(a) A small positive patch (b) A small negative patch

o 50 100 150 200 250

(c) Alarge positive patch (d) A large negative patch

Figure 4.1: A comparison of visual differences between two adjacent positive and
negative patches in a small (11 x 11) and a large patch size (256 x 256). Evidently it is

much easier to differentiate (a) from (b) rather than (c) from (d).

where a and b, integers belonging to the interval [-| %], |5 ]), are offsets from the
center of the patch being sampled and / and m, offsets of the corresponding voxel

from the image I, are computed as'®:

[ = la.eVeo ¥ 4 % | (4.2)
2 2 ]-
m = |b.e®V T ¢ 3 ] (4.3)

where « is a controlling factor indicating the extent of the patch, and o = 0 will
result in uniformly sampled patches. An intuitive way to see these equations is as
we get further away from the center of the patch (larger absolute values for a and
b) the z- and y-axis offsets of the voxels to be sampled from the image (I and m)
grow exponentially. This implies a dense sampling on the center and less dense
sampling from the sides. Figure 4.2 visualizes the sampled voxels for the mentioned
non-uniform patch creation (4.2(a)) and the resulted non-uniformly sampled patch
(4.2(b)) and compares it with uniformly sampled patches with a similar patch extent
(4.2(c)) and the same patch size (4.2(d)).
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(a) Non-uniformly sampled voxels (b) Resulted non-uniformly sam-
pled patch

(c) Uniformly sampled patch with (d) Uniformly sampled patch
a similar extent with the same size

Figure 4.2: An illustration of the patch sampling process from a FLAIR slice (o =
0.04).

4.1.2 CNN architecture and the training procedure

We create input patches with n = 32 and three different values for the o parameter
(v =0.01,0.02,0.04). We use an eight layers CNN as depicted in the top architecture
in Figure 4.3. This network consists of four convolutional layers that have 20, 40, 80
and 110 filters of size 7x7, 5x5, 3x3, 3x3 respectively. Then we apply three layers
of fully connected neurons of size 300, 200 and 2. Finally the resulting responses are
turned into probability values using a softmax classifier. The type of non-linearity
that we apply to each neuron is a rectified linear unit, which is known to prevent the
vanishing gradient problem in deep networks. We do not use pooling as it results in

a shift-invariance property '*?

, which is not desired in segmentation tasks.
We train our network with the stochastic gradient descent algorithm with a mini-
batch size of 128 and the cross-entropy cost function. We also use RMSPROP al-

gorithm to speedup the learning process by normalizing the gradient with a run-



62  Non-uniform Patch Sampling for White Matter Hyperintensity Segmentation

- Convolutional Layers
ONVOILLION ¢ hyolution

Convolution

Convolution

80

253

Convolutional } S
Layers G
Convolutional } =]
Layers )
Convolutional o

] =)
Layers ™

Figure 4.3: CNN architectures used in this study. From top to bottom: single-scale,

multi-scale early fusion and multi-scale late fusion with patches from three scales (51,
S, S3).

ning average of squared gradients for each parameter. Random initialization of the
weights is crucial in order to break the symmetry among the units the same layer.
Thus we randomly sample the initial weights from a (0, \/Lm) Gaussian distribution.
CNNs are complex architectures that are likely to easily overfit training-set-specific
patterns, thus to add a form of regularization and also to prevent co-adaptation of
feature detectors, we use drop-out with a ratio of 0.3 on all of the layers in the net-
work. We train our network for 10 epochs, which we found was sufficient for con-
vergence, and we pick the set of weights with the best A, on a validation set. We

utilize the Theano library'® for the implementation.
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Figure 4.4: An ROC comparison of different methods and the independent human

observer.

4.2 Experimental setup

42,1 Data

The data used for training, validation and evaluation of the proposed methods, is
provided by the RUN DMC'"!, which is a cohort study including T1 and FLAIR im-
ages of SVD patients. The part of the dataset that we use for this study consists of 466
cases that were annotated by either one (420) or two trained readers (46). We use the
46 subjects with two annotations for testing purposes and separate the rest into two
sets of 378 and 42 for training and validation respectively. There are several prepro-
cessing steps that have to be taken before the images are ready for patch extraction:
We first perform a rigid registration of T1 to FLAIR images. Then we extract the
brains from the T1 images and transfer and apply the resulting masks to the FLAIR
images. A bias field correction is then performed. We use the FSL package ™ for the
three mentioned steps. Finally we normalized the image intensities to be within the
range of [0, 1]. Extracting patches from the training and validation sets of subjects

results in a balanced dataset of 3.88M and 430K patches respectively.
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4.2.2 Evaluation and comparison

In order to evaluate the effectiveness of our non-uniform patch sampling method,
we compare it to three alternative approaches trained and validated with uniformly

sampled patches on the same datasets as illustrated in Figure 4.3:

e Single-scale (Uniform SS): Similar to most of the methods, we train a similar

single-scale network on uniformly sampled patches with the same size (32x32).

* Multi-scale early fusion (Uniform MSEF): As smaller patches are better for an ac-
curate localization, while larger patches capture more contextual information,
a CNN given multiple patches with varying sizes would benefit from both.
One possible architecture to fuse the information from multi-scale patches is to
fuse them in the input layer. For each candidate voxel we extract 128 x 128,
64 x 64 and 32 x 32 patches. Then we down-sample the two larger patches to
32 x 32 and feed them to a single CNN as different input channels.

* Multi-scale late fusion (Uniform MSLF): Another fusion possibility to leverage
the information in the multi-scale patches, is to input each scale separately into
several convolutional layers. Then we can fuse the representation features from
each scale and pass it forward to more fully connected layer. We use the same

three scales as mentioned for MSEFE.

The metrics that we use to compare these methods are Dice similarity coefficient and
area under the receiver operating characteristic (ROC) curves (A,). We also provide
p-values for a statistical significance test with bootstrapping and measuring the Dice

coefficient.

4.3 Results

Table 4.1 demonstrates the performance of the proposed algorithm given three dif-
ferent o values. Figure 4.4 and Table 4.2 compare the best performing non-uniform
sampling method (a = 0.02) to uniform sampling methods and an independent hu-
man observer with ROC curves, Dice and A, on the test set. Table 4.3 shows statisti-

cal significance test p-values for pairwise comparison of different methods.

4.4 Discussion and conclusions

As shown by the experiments, a CNN with non-uniform patch sampling can signif-

icantly outperform an identical network with the same amount of uniformly sam-
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Table 4.1: A comparison of the non-uniform sampling method with different o val-

ues.

Method Validation A, Test Dice Test A,

a=0.01 0.9958 0.756 0.9943
a=0.02 0.9963 0.780 0.9955
a = 0.04 0.9955 0.779 0.9954

Table 4.2: A comparison of the test set Dice and A. of the non-uniform sampling
method (a = 0.02) to different methods.

Method Dice A,

Uniform SS 0.736 0.9895
Uniform MSEF 0.759 0.9867
Uniform MSLF 0.776  0.9937
Non-uniform SS 0.780 0.9955

Independent observer 0.796 -

pled data from the input image (uniform SS). This happens as non-uniform sam-
pling enlarges the extent of the patch and thus provides more contextual informa-
tion to the CNN. Multi-scale approaches also aim to capture more contextual in-
formation with larger scales and improve over the uniformly sampled single-scale
patches. However, the experimental results suggest an advantage of single-scale
non-uniform sampling over uniform multi-scale approaches although their sample
size is larger by a factor of 3. This seems to be a consequence of the fact that a single
non-uniformly sampled patch not only contains both details on the focal part and
large context information, but also demands a simpler model with less weights for
training.

As an inherent limitation for this method, we do not know yet if it is possible to

benefit from a practical speed-up by turning it into a fully convolutional network.
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Table 4.3: Statistical significance tests for comparison of different methods. p;; rep-
resents p-value for a one-sided test checking whether method in row i is better than

method in column j.

Method UMSEF UMSLF NUSS Ind. Obs.

USSs <0.01 <0.01 <0.01 <0.01
UMSEF - <0.01 <0.01 <0.01
UMSLF - - 0.23 0.05

NUSS - - - 0.03
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Abstract

Magnetic Resonance Imaging (MRI) is widely used in routine clinical diagnosis and
treatment. However, variations in MRI acquisition protocols result in different ap-
pearances of normal and diseased tissue in the images. Convolutional neural net-
works (CNNs), which have shown to be successful in many medical image analysis
tasks, are typically sensitive to the variations in imaging protocols. Therefore, in
many cases, networks trained on data acquired with one MRI protocol, do not per-
form satisfactorily on data acquired with different protocols. This limits the use of
models trained with large annotated legacy datasets on a new dataset with a dif-
ferent domain which is often a recurring situation in clinical settings. In this study,
we aim to answer the following central questions regarding domain adaptation in
medical image analysis: Given a fitted legacy model, 1) How much data from the
new domain is required for a decent adaptation of the original network?; and, 2)
What portion of the pre-trained model parameters should be retrained given a cer-
tain number of the new domain training samples? To address these questions, we
conducted extensive experiments in white matter hyperintensity segmentation task.
We trained a CNN on legacy MR images of brain and evaluated the performance of
the domain-adapted network on the same task with images from a different domain.
We then compared the performance of the model to the surrogate scenarios where
either the same trained network is used or a new network is trained from scratch on
the new dataset.The domain-adapted network tuned only by two training examples
achieved a Dice score of 0.63 substantially outperforming a similar network trained

on the same set of examples from scratch.
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5.1 Introduction

Deep neural networks have been extensively used in medical image analysis and
have outperformed the conventional methods for specific tasks such as segmenta-
tion, classification and detection®. For instance on brain MR analysis, convolutional
neural networks (CNN) have been shown to achieve outstanding performance for
various tasks including white matter hyperintensities (WMH) segmentation'®, tu-

°, microbleed detection’®, and lacune detection'*. Although

mor segmentation'®
many studies report excellent results on specific domains and image acquisition
protocols, the generalizability of these models on test data with different distribu-
tions are often not investigated and evaluated. Therefore, to ensure the usability of
the trained models in real world practice, which involves imaging data from var-
ious scanners and protocols, domain adaptation remains a valuable field of study.
This becomes even more important when dealing with Magnetic Resonance Imaging
(MRI), which demonstrates high variations in soft tissue appearances and contrasts

among different protocols and settings.

Mathematically, a domain D can be expressed by a feature space X and a marginal
probability distribution P(X), where X = {zy,...,z,} € X'. A supervised learn-
ing task on a specific domain D = {X, P(X)}, consists of a pair of a label space Y
and an objective predictive function f(.) (denoted by 7" = {Y, f(.)}). The objective
function f(.) can be learned from the training data, which consists of pairs {z;, y;},
where z; € X and y; € Y. After the training process, the learned model denoted by
f(.) is used to predict the label for a new instance z. Given a source domain Dg with
a learning task 75 and a target domain Dy with learning task 77, transfer learning
is defined as the process of improving the learning of the target predictive function
fr(.) in Dr using the information in Dg and T, where Ds # Dz, or Ts # Tr'%. We
denote fs7(.) as the predictive model initially trained on the source domain Dg, and

domain-adapted to the target domain Dy.

In the medical image analysis literature, transfer classifiers such as adaptive SVM
and transfer AdaBoost, are shown to outperform the common supervised learning
approaches in segmenting brain MRI, trained only on a small set of target domain
67

images'®’. In another study a machine learning based sample weighting strategy

was shown to be capable of handling multi-center chronic obstructive pulmonary

disease images '

. Recently, also several studies have investigated transfer learning
methodologies on deep neural networks applied to medical image analysis tasks. A
number of studies used networks pre-trained on natural images to extract features
and followed by another classifier, such as a Support Vector Machine (SVM) or a

random forest'®. Other studies!'”*!”! performed layer fine-tuning on the pre-trained
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networks for adapting the learned features to the target domain.

Considering the hierarchical feature learning fashion in CNN, we expect the first
few layers to learn features for general simple visual building blocks, such as edges,
corners and simple blob-like structures, while the deeper layers learn more com-
plicated abstract task-dependent features. In general, the ability to learn domain-
dependent high-level representations is an advantage enabling CNNs to achieve
great recognition capabilities. However, it is not obvious how these qualities are
preserved during the transfer learning process for domain adaptation. For example,
it would be practically important to determine how much data on the target domain
is required for domain adaptation with sufficient accuracy for a given task, or how
many layers from a model fitted on the source domain can be effectively transferred
to the target domain. Or more interestingly, given a number of available samples
on the target domain, what layer types and how many of those can we afford to
tine-tune. Moreover, there is a common scenario in which a large set of annotated
legacy data is available, often collected in a time-consuming and costly process. Up-
grades in the scanners, acquisition protocols, etc., as we will show, might make the
direct application of models trained on the legacy data unsuccessful. To what extent
these legacy data can contribute to a better analysis of new datasets, or vice versa, is
another question worth investigating.

In this study, we aim towards answering the questions discussed above. We use
transfer learning methodology for domain adaptation of models trained on legacy
MRI data on brain WMH segmentation.

5.2 Materials and Method

5.2.1 Dataset

Radboud University Nijmegen Diffusion tensor and Magnetic resonance imaging
Cohort (RUN DMC)!% is a longitudinal study of patients diagnosed with small ves-
sel disease. The baseline scans acquired in 2006 consisted of fluid-attenuated inver-
sion recovery (FLAIR) images with voxel size of 1.0x1.2x5.0 mm and an inter-slice
gap of 1.0 mm, scanned with a 1.5 T Siemens scanner. However, the follow-up scans
in 2011 were acquired differently with a voxel size of 1.0x1.2x3.0 mm, including a
slice gap of 0.5 mm. The follow-up scans demonstrate a higher contrast as the par-
tial volume effect is less of an issue due to thinner slices. For each subject, we also
used 3D T1 magnetization-prepared rapid gradient-echo (MPRAGE) with voxel size
of 1.0x1.0x1.0 mm which is the same among the two datasets. Reference WMH an-

notations on both datasets were provided semi-automatically, by manually editing
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Table 5.1: Number of patients for the domain adaptation experiments.

Source Domain Target Domain

Set Train Validation Test Train Validation Test
Size 200 30 50 100 26 33

segmentations provided by a WMH segmentation method ! wherever needed.

The T1 images were linearly registered to FLAIR scans, followed by brain extrac-
tion and bias-filed correction operations. We then normalized the image intensities
to be within the range of [0, 1].

In this study, we used 280 patient acquisitions with WMH annotations from the
baseline as the source domain, and 159 scans from all the patients that were res-
canned in the follow-up as the target domain. Table 5.1 shows the data split into
the training, validation and test sets. It should be noted that the same patient-level
partitioning which was used on the baseline, was respected on the follow-up dataset

to prevent potential label leakages.

5.2.2 Sampling

We sampled 32x32 patches to capture local neighborhoods around WMH and nor-
mal voxels from both FLAIR and T1 images. We assigned each patch with the label
of the corresponding central voxel. To be more precise, we randomly selected 25%
of all voxels within the WMH masks, and randomly selected the same number of
negative samples from the normal appearing voxels inside the brain mask. We aug-
mented the dataset by flipping the patches along the y axis. This procedure resulted
in training and validation datasets of size ~1.2m and ~150k on the baseline, and
~1.75m and ~200k on the followup.

5.2.3 Network Architecture and Training

We stacked the FLAIR and T1 patches as the input channels and used a 15-layer
architecture consisting of 12 convolutional layers of 3x3 filters and 3 dense layers of
256, 128 and 2 neurons, and a final softmax layer. We avoided using pooling layers as
they would result in a shift-invariance property that is not desirable in segmentation
tasks, where the spatial information of the features are important to be preserved.
The network architecture is illustrated in Figure 5.1.

172

To tune the weights in the network, we used the Adam update rule * with a mini-

batch size of 128 and a binary cross-entropy loss function. We used the Rectified Lin-
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Figure 5.1: Arcitecture of the convolutional neural network used in our experiments.
The shallowest i layers are frozen and the rest d — i layers are fine-tuned. d is the
depth of the network which was 15 in our experiments.

ear Unit (ReLU) activation function as the non-linearity and the He method ?* that
randomly initializes the weights drawn from a N (0, \/g ) distribution, where m is
the number of inputs to a neuron. Activations of all layers were batch-normalized
to speed up the convergence!’”®. A decaying learning rate was used with a start-
ing value of 0.0001 for the optimization process. To avoid over-fitting, we regular-
ized our networks with a drop-out rate of 0.3 as well as the L, weight decay with
A2=0.0001. We trained our networks for a maximum of 100 epochs with an early
stopping policy. For each experiment, we picked the model with the highest area
under the curve on the validation set.

We trained our networks with a patch-based approach. At segmentation time,
however, we converted the dense layers to their equivalent convolutional counter-
parts to form a fully convolutional network (FCN). FCNs are much more efficient
as they avoid the repetitive computations on neighboring patches by feeding the
whole image into the network. We prefer the conceptual distinction between dense
and convolutional layers at the training time, to keep the generality of experiments
for classification problems as well (e.g., testing the benefits of fine-tuning the con-
volutional layers in addition to the dense layers). Patch-based training allows class-

specific data augmentation to handle domains with hugely imbalanced class ratios
(e.g., WMH segmentation domain).

5.24 Domain Adaptation

To build the model fST(.), we transferred the learned weights from f 5, then we froze
shallowest 7 layers and fine-tuned the remaining d — i deeper layers with the train-
ing data from D7, where d is the depth of the trained CNN. This is illustrated in
Figure 5.1. We used the same optimization update-rule, loss function, and regular-
ization techniques as described in Section 5.2.3.
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Figure 5.2: (a) The comparison of Dice scores on the target domain with and without
transfer learning. A logarithmic scale is used on the x axis. (b) Given a deep CNN
with d=15 layers, transfer learning was performed by freezing the ¢ initial layers and
fine-tuning the last d — i layers. The Dice scores on the test set are illustrated with
the color-coded heatmap. On the map, the number of fine-tuned layers are shown

horizontally, whereas the target domain training set size is shown vertically.

5.2.5 Experiments

On the WMH segmentation domain, we investigated and compared three different
scenarios: 1) Training a model on the source domain and directly applying it on the
target domain; 2) Training networks on the target domain data from scratch; and 3)
Transferring model learned on the source domain onto the target domain with fine-
tuning. In order to identify the target domain dataset sizes where transfer learning
is most useful, the second and third scenarios were explored with different training
set sizesof 2,3,4,5,6,7,8,9, 10, 11, 12, 25, 50 and 100 cases. We extensively ex-
panded the third scenario investigating the best freezing/tuning cut-off for each of
the mentioned target domain training set sizes. We used the same network architec-
ture and training procedure among the different experiments. The reported metric

for the segmentation quality assessment is the Dice score.
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Figure 5.3: Examples of the brain WMH MRI segmentations. (a) Axial T1-weighted
image. (b) FLAIR image. (c-f) FLAIR images with WMH segmented labels: (c) refer-
ence (green) WMH. (d) WMH (red) from a domain adapted model (fs7(.)) fine-tuned
on five target training samples. (e) WMH (yellow) from model trained from scratch

(fs7(.)) on 100 target training samples. (ff WMH (orange) from model trained from
scratch (fs7(.)) on 5 target training samples.

5.3 Results

The model trained on the set of images from the source domain ( fs), achieved a
Dice score of 0.76. The same model, without fine-tuning, failed on the target domain
with a Dice score of 0.005. Figure 5.2(a) demonstrates and compares the Dice scores
obtained with three domain-adapted models to a network trained from scratch on
different target training set sizes. Figure 5.2(b) illustrates the target domain test set
Dice scores as a function of target domain training set size and the number of abstract
layers that were fine-tuned. Figure 5.3 presents and compares qualitative results of

WMH segmentation of several different models of a single sample slice.
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5.4 Discussion and Conclusions

We observed that while fg demonstrated a decent performance on Dy, it totally
failed on Dp. Although the same set of learned representations is expected to be
useful for both as the two tasks are similar, the failure comes to no surprise as the
distribution of the responses to these features are different. Observing the compar-
isons presented by Figure 5.2(a), it turns out that given only a small set of training
examples on Dy, the domain adapted model substantially outperforms the model
trained from scratch with the same size of training data. For instance, given only
two training images, fsr achieved a Dice score of 0.63 on a test set of 33 target do-
main test images, while fr resulted in a dice of 0.15. As Figure 5.2(b) suggests, with
only a few Dy training cases available, best results can be achieved by fine-tuning
only the last dense layers, otherwise enormous number of parameters compared
to the training sample size would result in over-fitting. As soon as more training
data becomes available, it makes more sense to fine-tune the shallower representa-
tions (e.g., the last convolutional layers). It is also interesting to note that tuning the
tirst few convolutional layers is rarely useful considering their domain-independent

characteristics.
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Abstract

Lacunes of presumed vascular origin (lacunes) are associated with an increased risk
of stroke, gait impairment, and dementia and are a primary imaging feature of the
small vessel disease. Quantification of lacunes may be of great importance to elu-
cidate the mechanisms behind neuro-degenerative disorders and is recommended
as part of study standards for small vessel disease research. However, due to the
different appearance of lacunes in various brain regions and the existence of other
similar-looking structures, such as perivascular spaces, manual annotation is a diffi-
cult, elaborative and subjective task, which can potentially be greatly improved by
reliable and consistent computer-aided detection (CAD) routines.

In this paper, we propose an automated two-stage method using deep convolu-
tional neural networks (CNN). We show that this method has good performance and
can considerably benefit readers. We first use a fully convolutional neural network to
detect initial candidates. In the second step, we employ a 3D CNN as a false positive
reduction tool. As the location information is important to the analysis of candidate
structures, we further equip the network with contextual information using multi-
scale analysis and integration of explicit location features. We trained, validated and
tested our networks on a large dataset of 1075 cases obtained from two different
studies. Subsequently, we conducted an observer study with four trained observers
and compared our method with them using a free-response operating characteristic
analysis. Shown on a test set of 111 cases, the resulting CAD system exhibits per-
formance similar to the trained human observers and achieves a sensitivity of 0.974
with 0.13 false positives per slice. A feasibility study also showed that a trained

human observer would considerably benefit once aided by the CAD system.
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6.1 Introduction

Lacunes of presumed vascular origin (lacunes), also referred to as lacunar strokes
or silent brain infarcts, are frequent imaging features on scans of elderly patients
and are associated with an increased risk of stroke, gait impairment, and demen-
tia??1°%17* Lacunes are presumed to be caused by either symptomatic or silent small
subcortical infarcts, or by small deep haemorrhages'”® and together with white mat-
ter hyperintensities, microbleeds, perivascular spaces and brain atrophy are known
to be imaging biomarkers that signify the small vessel disease (SVD) 7.

Lacunes are defined as round or ovoid subcortical fluid-filled cavities of between 3
mm and about 15 mm in diameter with signal intensities similar to cerebrospinal
fluid (CSF)*. On fluid-attenuated inversion recovery (FLAIR) images, lacunes are
mostly represented by a central CSF-like hypointensity with a surrounding hyperin-
tense rim; although the rim may not always be present?. In some cases, the central
cavity is not suppressed on the FLAIR image and hence the lesion might appear en-
tirely hyperintense, while a clear CSF-like intensity appears on other sequences such
as T1-weighted or T2-weighted MR images'”’.

Wardlaw et al.* propose measurements of the number and location of lacunes of
presumed vascular origin as part of analysis standards for neuroimaging features of
SVD studies. However, this is known to be a challenging highly subjective task since
the lacunes can be difficult to differentiate from the perivascular spaces, another SVD
imaging feature. Perivascular spaces are also areas filled by cerebrospinal fluid, that
even though they are often smaller than 3 mm, they could enlarge up to 10 to 20
mm*. Although perivascular spaces naturally lack the hyperintense rim, such a rim
could also surround perivascular spaces when they pass through an area of white
matter hyperintensity 75

Considering the importance, difficulty and hence potential subjectivity of the lacune
detection task, assistance from a computer-aided detection (CAD) system may in-
crease overall user performance. Therefore, a number of automated methods have
been proposed:

Yokoyama et al.*® developed two separate methods for detection of isolated lacunes
and lacunes adjacent to the ventricles, using threshold-based multiphase binariza-
tion and a top-hat transform respectively. Later on, Uchiyama et al. employed
talse positive reducers on top of the previously mentioned method, describing each
candidate with 12 features accompanied with a rule-based and a support vector
machine classifier'” or alternatively a rule-based and a three-layered neural net-
work followed by an extra modular classifier'®. In another study Uchiyama et al.

used six features and a neural network for discriminating lacunes from perivascular
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spaces #1182 They also showed that the performance of radiologists without a CAD
system could be improved once the CAD system detections were exposed to the ra-

183

diologists'>*. Another false positive reduction method using template matching in

the eigenspace was recently utilized by the same group'®. Finally, Wang et al.'®
detect lacunes by dilating the white matter mask and using a rule-based pruning of
false positives considering their intensity levels compared to the surrounding white
matter tissue.

52,118

Deep neural networks are biologically inspired learning structures and have

so far claimed human level or super-human performances in several different do-

mains 121-125

. Recently deep architectures and in particular convolutional neural net-
works (CNN)!* have attracted enormous attention also in the medical image analy-
sis field, given their exceptional ability to learn discriminative representations for a
large variety of tasks. Therefore a recent wave of deep learning based methods has

39,169,186-189

appeared in various domains of medical image analysis , including neuro-

imaging tasks such as brain extraction'®, tissue segmentation**1371%  tumor seg-

mentation 142143 114-117,164,191

, microbleed detection'®® and brain lesion segmentation
In this paper, we propose a two-stage application of deep convolutional networks
for the detection of lacunes. We use a fully convolutional network' for candidate
detection and a 3D convolutional network for false positive reduction. Since the
anatomical location of imaging features is of importance in neuro-image analysis
(e.g. for the detection of WMHs®), we equip the CNN with more contextual infor-
mation by performing multi-scale analysis as well as adding explicit location infor-
mation to the network. To evaluate the performance of our proposed method and
compare it to trained human observers, we perform an observer study on a large test

set of 111 subjects with different underlying disorders.

6.2 Materials

Data for training and evaluation of our method comes from two different studies: the
Radboud University Nijmegen Diffusion tensor and Magnetic resonance imaging
Cohort (RUNDMC) and the Follow-Up of transient ischemic attack and stroke pa-
tients and Unelucidated Risk factor Evaluation study (FUTURE). The RUNDMC !
investigates the risk factors and clinical consequences of SVD in individuals 50 to 85
years old without dementia and the FUTURE' is a single-centre cohort study on
risk factors and prognosis of young patients with either transient ischemic attack,

ischemic stroke or hemorrhagic stroke. We collected 654 and 421 MR images from
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Figure 6.1: CNN architecture for candidate detection.

the RUNDMC and the FUTURE studies respectively, summing up to 1075 scans in
total.

6.2.1 Magnetic Resonance Imaging

No Iacune??lacune

For each subject we used a 3D T1 magnetization-prepared rapid gradient-echo (MPRAGE)

with voxel size of 1.0x1.0x1.0 mm and a FLAIR pulse sequence with voxel size
1.0x1.2x3.0 mm (including a slice gap of 0.5 mm).

6.2.2 Training, Validation and Test Sets

We randomly split the total 1075 cases into three sets of size 868, 96 and 111 scans for
training, validation and test purposes respectively.

6.2.3 Reference Annotations

Lacunes were delineated for all the images in the training and validation sets in a
slice by slice manner by two trained raters (one for the RUNDMC and another for
the FUTURE dataset), following the definitions provided in the SVD neuro-imaging
study standards*.

6.2.4 Preprocessing

We performed the following pre-processing steps before supplying the data to our
networks.

Image Registration

Due to possible movement of patients during scanning, the image coordinates of the

T1 and FLAIR modalities might not represent the same location. Thus we performed



82 Deep Neural Networks for Detection of Lacunes

a rigid registration of T1 to FLAIR image for each subject, by optimizing the mutual
information with trilinear interpolation resampling. For this purpose, we used FSL-
FLIRT®?. Also to obtain a mapping between patient space and an atlas space, all
subjects were non-linearly registered to the ICBM152 atlas®® using FSL-FNIRT "',

Brain Extraction

To extract the brain and exclude other structures, such as skull, eyes, etc., we ap-
plied FSL-BET* on T1 images. The resulting masks were then transformed using

registration transformations and were applied to the FLAIR images.

Bias Field Correction

We applied FSL-FAST*, which uses a hidden Markov random field and an associ-
ated expectation-maximization algorithm to correct for spatial intensity variations

caused by RF inhomogeneities.

6.3 Methods

Our proposed CAD scheme consists of two phases, a candidate detector and a false
positive reducer, for both of which, we employ convolutional neural networks. The

details for each subproblem are expanded in the following subsections.

6.3.1 Candidate Detection

As a suitable candidate detector, a method should be fast, highly sensitive to lacunes,
while keeping the number of candidates relatively low. To achieve these, we formu-
lated the candidate detection as a segmentation problem and used a CNN for this
segmentation task. A CNN would likely satisfy all the three criteria above: CNNs
have shown to be great tools for learning discriminative representation of the input
pattern. Additionally, once CNNs are formulated in a fully convolutional form'®?,
they can also be very fast in providing dense predictions for image segmentation (in

order of a few seconds for typical brain images).

Sampling

We captured 51 x51 patches to describe a local neighborhood of each voxel we took as
a sample, from both the FLAIR and T1 images. As positive samples, we picked all the

voxels in the lacune masks and augmented them by flipping the patch horizontally.
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(a) Original FLAIR image (b) Candidate segmentation (c) Candidate extraction

Figure 6.2: An illustrated example on extracting lacune candidates from the (possibly

attached) segmentations.

We randomly sampled negative patches within the brain mask, twice as many as

positive patches. This procedure resulted in a dataset of 320k patches for training.

Network Architecture and Training Procedure

As depicted in Figure 6.1, we used a seven layers CNN that consisted of four con-
volutional layers that have 20, 40, 80 and 110 filters of size 7x7, 5x5, 3x3, 3x3 re-
spectively. We applied only one pooling layer of size 2x2 with a stride of 2 after the
tirst convolutional layer since pooling is known to result in a shift-invariance prop-

erty 153

, which is not desired in segmentation tasks. Then we applied three layers
of fully connected neurons of size 300, 200 and 2. Finally, the resulting responses
were turned into likelihood values using a softmax classifier. We also used batch-
normalization'”® to accelerate the convergence by reducing the internal covariate
shift.

For training the network, we used the stochastic gradient descent algorithm !>

with the Adam update rule!”

, mini-batch size of 128 and a categorical cross-entropy
loss function. The non-linearity applied to neurons was a rectified linear unit (RELU)
to prevent the vanishing gradient problem °. We initialized the weights with the He
method?, where the weights are randomly drawn from a (0, \/% ) Gaussian dis-
tribution. Since CNNss are complex architectures, they are prone to overfit the data
very early. Therefore in addition to the batch normalization, we used drop-out'”
with 0.3 probability on all fully connected layers as well as L, regularization with
X2=0.0001. We used an early stopping policy by monitoring validation performance

and picked the best model with the highest accuracy on the validation set.
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Fully Convolutional Segmentation and Candidate Extraction

A sliding window patch-based segmentation approach is slow since independently
convolving the corresponding patches of neighboring voxels imposes a highly re-
dundant processing. Therefore we utilized a fully convolutional approach for our
lacune segmentation. Although the CNN explained in subsection 3.1.2 was trained
with patches, we can reformulate the trained fully connected layers into equivalent
convolutional filter counterparts'®>. However, due to the presence of max pooling
and convolutional filters the resulting dense prediction is smaller than the original
image size. Therefore we used the shift-and-stitch method ' to up-sample the dense
predictions into a full-size image segmentation.

A possible coarser segmentation of the candidates might lead to attachment of
the segments for two or more close-by candidates. To recover the possibly attached
segments into corresponding candidates representative points, we performed a local
maxima extraction with a sliding 2D 10x10 window on the likelihoods provided by
the CNN (see Figure 6.2), followed by a filtering of the local maxima that had a
likelihood lower than 0.1. This threshold value was optimized for a compromise
between sensitivity and number of extracted candidates on the validation set (0.93

sensitivity with 4.8 candidates per slice on average).

6.3.2 False Positive Reduction

We trained a 3D CNN to classify each detected candidate as either a lacune or a
false positive. Contextual information plays an important role for the task at hand as
one of the most challenging problems for detection of lacunes, is the differentiation
between lacunes and enlarged perivascular spaces. Since perivascular spaces promi-
nently occur in the basal ganglia, location information can be used as a potentially ef-

fective discriminative factor. Therefore similar to!*

, we employ two mechanisms to
provide the network with contextual information: multi-scale analysis and integra-
tion of explicit location features into the CNN. These mechanisms will be explained

in the following sections.

Sampling

We captured 3D patches surrounding each candidate at three different scales: 32x32x5,
64x64x5 and 128 x128 x5 from the FLAIR and T1 modalities, which form the differ-
ent channels of the input. We down-sample the two larger scale patches to corre-
spond in size with the smaller scale (32x32x5). This is motivated by the main aim

of the larger scale patches to provide general contextual information and not the de-
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Figure 6.3: 3D multi-scale location-aware CNN architecture for false positive reduc-

tion.

tails, which is supplied by smaller scale patch.

We used all the lacunes as positive samples and augmented them with cropping all
possible 32x32 patches from a larger 42x42 neighborhood and also by horizontally
flipping the patches. This yielded an augmentation factor of 11x11x2=242. We ran-
domly picked an equal number of negative samples from non-lacune candidates. To
prevent information leakage from the augmentation operation, we applied random
cropping for negative samples as well. Otherwise the network could have learned
that patches, for which the lacune-like candidate is not located at the center are more
likely to be positive. The created input patches were normalized and zero-centered.
This sampling process resulted in datasets of 385k and 35k samples for training and
validation purposes respectively.

Network Architecture and Training Procedure

Referring to Figure 6.3, we utilized a late fusion architecture to process the multi-
scale patches. Each of the three different scales streamed into stacks of 6 convolu-
tional layers with weight sharing among the streams. Each stack of 6 convolutional
layers consisted of 64, 64, 128, 128, 256, 256 filters of size 3x3x2, 3x3x2, 3x3x1,
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3x3x1, 3x3x1, 3x3x1 respectively. We applied a single 2x2x1 pooling layer after
the second convolutional layer.

The resulting feature maps were compressed with three separate fully connected
layers of 300 neurons and were concatenated. At this stage, we embedded seven
explicit location features to form a feature vector of size 907, which represents a lo-
cal appearance of the candidate at different scales, together with information about
where the candidate is located. The seven integrated features describe for each can-
didate the z, y and 2 coordinates of the corresponding location in the atlas space,
and its distances to several brain landmarks: the right and the left ventricles, the
cortex and the midsagittal brain surface. Then the resulting 907 neurons were fully
connected to two more fully connected layers with 200 and 2 neurons. The resulting
activations were finally fed into a softmax classifier. The activations of all the layers
were batch-normalized.

The details of the training procedure were as follows: stochastic gradient de-
scend with Adam update and mini-batch size of 128, RELU activation units with the
He weight initialization, dropout rate of 0.5 on fully connected layers and L, regu-
larization with \,=2e-5, a decaying learning rate with an initial value of 5e-4 and a
decay factor of 2 applied at the times that the training accuracy dropped, training for
40 epochs, and selecting the model that acquired the best accuracy on the validation
set.

Test-time Augmentation

It has been reported that applying a set of augmentations at the test time and aggre-
gating the predictions over the different variants might be beneficial™®. Motivated
by this, we also performed test-time augmentation by means of cropping and flip-
ping the patches (as explained earlier) and then averaged over the predictions for

the resulting 242 variants, per sample.

6.3.3 Observer Study

Since an important ultimate goal for the computer-aided diagnosis field is to estab-
lish automated methods that perform similar to or exceed experienced human ob-
servers, we conducted an observer study, where four trained observers also rated the
test set and we compared the performance of the CAD system with the four trained
observers. The training procedure was as follows: The observers had a first session
on definition of the lacunes, their appearances on different modalities (FLAIR and
T1), similar looking other structures such as perivascular spaces and their discrim-

inating features, following the conventions defined in the established standards in
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Table 6.1: Number of detected lacunes on different definitions of observers agree-
ments and the corresponding sensitivity of the candidate detector on each set. The
last four columns represent the reference standards that are formed by excluding each
observer and performing majority vote over the remaining observers. The candidate

detector detects 4.6 candidates per slice (213 per scan) on average.

At least

2 out of 3 excluding

Atleast Atleast

Measure\Reference standard
2outof4 3outof4

Obs.1 Obs.2 Obs.3 Obs.4

Number of detected lacunes 92 38 76 81 51 52
Candidate detector sensitivity 0.97 1 097 098 098 098

SVD research?. Then each observer separately rated 20 randomly selected subjects
from the training set. In a subsequent consensus meeting, the observers discussed
the lacunes they had detected /missed on the mentioned set of images. After the
training procedure, each observer independently marked the lacunes by selecting a

single representative point for the lacunes appearances on each slice.

6.3.4 Experimental Setup

FROC

We performed a free-response operating characteristic (FROC) analysis in order to
evaluate the performance of the proposed CAD system to compare it to the trained
human observers. To be more specific, for comparing the CAD system to the i-th
observer, we took the observer 7 out, and formed an evaluation reference standard
from the remaining three observers. We used majority voting to form the reference
standard, meaning that we considered an annotation as a lacune if at least 2 out of
the 3 remaining observers agreed with that. For both CAD and the i-th observer to
compare with, we considered a detection as a true positive, if it was closer than 3mm
to a representative lacune marker in the reference standard, otherwise we counted
that as a false positive. Wherever appropriate, we provided with the FROC curves,
95% confidence intervals obtained through bootstrapping with 100 bootstraps. For

each bootstrap, a new set of scans was constructed using sampling with replacement.

Experiments

In our experiments we first measured results regarding the observer study, including

the number of detected lacunes by each observer, the number of lacunes in several
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agreement-sets, based on different definitions of agreement, and the performance of
our candidate detector (average number of produced candidates and sensitivity on
each observer agreement set). Then we evaluated and compared the proposed CAD
system with the four available trained human observers using FROC analysis, fol-
lowed by another FROC analysis for a feasibility study, in which we showed to what
extent a trained human observer would benefit from our proposed CAD approach,
once the CAD detections are exposed to the observer. To be more specific, the mark-
ers of the CAD at a certain threshold with a high specificity (0.88 sensitivity and 0.07
false positives per slice), were shown to the observer who was then asked to check
the CAD suggestions, followed by a check to add any other lacune that was missing.
Finally, we show the contribution of two of the components of our method, namely
our mechanisms to integrate contextual information (the multi-scale analysis and lo-
cation feature integration) and the test-time augmentation. To numerically show
the contribution of the mentioned method components, we summarize the FROC
curves with a single score defined as the average sensitivity over operating points
with false positives below 0.4 per slice. We perform this analysis for the reference
standards formed by agreement of at least either two or three out of the four ob-
servers. For these comparisons, we also provide empirical p-values computed based

on 100 bootstraps.

6.4 Results

It turned out that during the observer study, observers one to four detected 64, 38,
142 and 106 lacune locations respectively. Table 6.1 shows the number of lacunes in
agreement between observers, based on different observers agreement definitions,
together with the sensitivity of our fully convolutional neural network candidate
detector on each agreement set.

Our candidate detector achieves the mentioned sensitivities producing 4.6 candi-
dates per slice (213 per scan) on average. Figure 6.4 illustrates FROC analyses of the
trained observers compared to the corresponding FROC curves for the CAD system,
accompanied with 95% confidence intervals. Figure 6.6 depicts the difference be-
tween the performances of observer 2 with and without observation of CAD marks
while detecting the lacunes.

Figure 6.5 provides a more general evaluation of the proposed CAD system us-
ing all the four observers to form the reference standard based on majority voting
(using lacunes marked by at least 3 out of 4 observers) and also an indication of the
contribution of each method components. Table 6.2 summarizes this information

by reporting p-values and scores that represent average sensitivity over operating
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Figure 6.4: FROC curves comparing the performance of different trained observers
with the proposed CAD system. The reference standards for comparing with observer
i is formed with the lacunes that at least 2 out of the 3 remaining observers agree on.

Shaded area indicates 95% intervals.

points with false positives less than 0.4 per slice.

To provide information about typical true positives, false positives, and false neg-
atives, Figure 6.7 illustrates the appearances of the candidates for three sample cases

per category on the FLAIR and T1 slices.
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Table 6.2: Benefit of context aggregation (multi-scale analysis and location feature in-
tegration) and test-time augmentation for the proposed method, analyzed for cases
where the reference standard was formed by agreement of at least two or three ob-
servers out of four. Scores represent average sensitivity over operating points with

false positives less than 0.4 per slice.

Measure \Reference standard agreement Atleast 2 outof 4 At least 3 out of 4
Score: proposed CAD 0.82 0.92
Score: no context integration 0.68 0.83
p-value: with vs. without context integration <0.01 0.02
Score: no test augmentation 0.76 0.89
p-value: with vs. without test augmentation 0.03 0.06

6.5 Discussion

6.5.1 Two-stage Approach

In this study, we used a two-stage scheme with two different neural networks for
candidate detection and false positive reduction tasks. The two primary motivations
for not using a single network for lacune segmentation are the following: First, the
used approach is more computationally efficient. Our much simpler candidate de-
tector network first cheaply removes a vast majority of voxels that are unlikely to be
a lacune. Subsequently, we apply a more expensive 3D, multi-scale, location-aware
network only on the considerably reduced candidates space (4.6 per slice on aver-
age). Second, capturing enough samples from the more informative, harder nega-
tive voxels that resemble lacunes (e.g. perivascular spaces) would not be possible in
a single stage, due to the resulting training dataset imbalance issue, which requires

us to sample with a low rate from the large negative sample pool.

6.5.2 Contribution of Method Ingredients

Referring to Table 6.2, it turns out that providing more contextual information us-
ing multi-scale analysis and integrating explicit location features is significantly im-
proving the performance of the resulting CAD approach. This is likely because the
appearance of lacunes varies for different brain anatomical locations (e.g. lacunes
in the cerebellum usually do not appear with a surrounding hyperintense rim), and
the fact that the other similar looking structures are more prominently occurring in
specific locations (e.g. perivascular spaces more often appear in the basal ganglia).

Such strategies can be effective not only for this particular task, but also in other
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Figure 6.5: Contribution of different method components considering agreement of

at least 3 out of 4 as the reference standard.

biomedical image analysis domains, where the anatomical location of the imaging

features matters.

Referring to Table 6.2 and Figure 6.5, we observed that test-time augmentation
is another effective component. This is likely due to aggregating predictions on an
augmented set of pattern representations of a single candidate, reduces the chance
that a single pattern in the input space is not well discriminated by the trained neural
network.

6.5.3 Feasibility Study on Improvement of Human Observers Us-
ing CAD

Figure 6.6 shows that a trained human observer can considerably improve once
aided by our CAD system. This can be explained by the fact that contrasted by com-
puter systems, humans require a substantial effort for doing an exhaustive search.
Therefore showing the markers that the CAD system detects to the human observer,

eases the task for the observers and reduces the probability of missing a lacune.
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Figure 6.6: Improvement of observer 2 once shown the CAD system detections while

rating the scans.

6.5.4 Comparison to Other Methods

As referred to in the introduction section, a number of algorithms with either a rule-
based method or supervised learning algorithms with hand-crafted features exist.
However, it is not possible to objectively compare the different methodologies on a
unified dataset as implementations of none of the methods are publicly available and
neither are the datasets these are applied on. Since the majority of the other meth-
ods also use FROC analysis, we mention here the reported results on the exclusive
datasets just to provide a general idea about the performance of the other methods.
Yokoyama et al.*® report a sensitivity of 90.1% with 1.7 false positives per slice on
average. The three later methods by Uchiyama et al., using different false positive
reduction methods, were all reported to have a sensitivity of 0.968, with 0.76 false
positives per slice for the method that used a rule-based and a support vector ma-
chine'”, 0.3 false positives for rule-based, neural network and modular classifier'®,
and 0.71 for the eigenspace template matching method'®*. At an average false pos-
itive of 0.13 per slice, our method detects 97.4% of the lacunes that the majority of
the four observers agree on. We should further emphasize that since the test popu-
lation’s underlying disorder, the MR imaging protocols and the reference standard
can influence the results, this does not provide a fair comparison between the differ-

ent methods. Therefore in our study we chose to compare our automated method to
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Figure 6.7: FLAIR (left) and T1 (right) crops for sample cases of true positives ((a)-(c)),

false positives ((d)-(f)) and false negatives ((g)-(i)), with the reference standard formed
as the majority of the four observers (at least three out of four), and a threshold of 0.6

(0.7 sensitivity and 0.02 false positives per slice).

trained human observers that rated the same set of images.

6.6 Conclusion

In this study, we proposed an automated deep learning based method that was able
to detect 97.4% of the lacunes that the majority of the four trained observers agreed
on with 0.13 false positives per slice. We showed that integrating contextual infor-
mation, and test-time augmentation are effective components of this methodology.
We also showed in a feasibility study that a trained observer potentially improves
when using the presented CAD system.
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The preceding chapters of this thesis described various methods for the quantifica-
tion of white matter hyperintensities (WMH) and lacunes as two imaging biomark-
ers of small vessel disease (SVD) in MR images. In this chapter, we provide a general
summary of this thesis and briefly describe the results of each chapter.

SVD is a prevalent neurological disorder among the elderly population that is
usually accompanied by mild symptoms such as cognitive decline, depression as
well as motor and gait disturbances. White matter hyperintensities, lacunes of pre-
sumed vascular origin, brain microbleeds, perivascular spaces and brain atrophy are

the imaging biomarkers that signify SVD*.

Chapter 2 describes a novel detection system for white matter hyperintensities.
WMHs can occur with a wide range of variety of different shapes and sizes*. There
is a multitude of methods in the literature for the segmentation of Multiple Sclerosis
lesions and WMHs®#1% However, almost all of these methods are optimized to
maximize overlapping area criteria such as the Dice and Jaccard similarity scores.
Small lesions do not contribute much to the overlapping area measures, have a dif-
ferent intensity /appearance distribution and are harder to spot. Hence these lesions
are often overlooked by the existing methods. In the method presented in Chapter
2, we describe a method for detection of lesions of all sizes by carefully tailoring the
features, classifiers and the evaluation metrics, to optimize the detection of small le-
sions as well as the larger ones. We trained two separate classifiers for small and
large lesions, used the Adaboost classifier to better emphasize the learning of harder
samples (smaller lesions) and took advantage of the FROC analysis to give equal
importance to detection of lesions regardless of their sizes. As a result, we obtained
a system that achieves a sensitivity of 80% with 37 false positives per volume on av-
erage. This result was shown to be close to two independent human experts (exp1:
93% sensitivity with 55 false positives, exp2: 77% sensitivity with 27 false positives

on average).

Chapter 3 tackles the WMH segmentation problem, with the more frequently
used evaluation measures of Dice similarity score with the breakthrough deep learn-
ing technology, where a hierarchical set of (optimal) features are learned. We trained
convolutional neural networks to achieve this. However, a straightforward convolu-
tional neural network, even though highly capable of understanding the content of
the local appearance of the patch at hand, lacks the contextual information required
for an optimal segmentation. In order to incorporate the contextual information, we

investigated two different approaches: either combining information from multiple
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scales or integrate explicit location features. For combining the multi-scale informa-
tion we studied different fusion policies. In our experiments, we observed that the
integration of location features and the late fusion strategy of the multi-scale analy-
sis each significantly improved the segmentation quality over the simple single scale
CNN. We showed that by combining both techniques our method achieves a 0.79
Dice score compared to 0.80 for the independent human expert, while the perfor-
mance of the human expert is not statistically significantly better than our proposed
method.

We proposed two solutions in Chapter 3, for aggregating more contextual infor-
mation for a CNN segmenting white matter hyperintensities, namely explicit loca-
tion information integration and multi-scale analysis. However, the effectiveness of
each of these solutions might be arguable. The former benefits from engineered fea-
tures, that might be considered a strategy not in full accordance with the general
philosophy of deep learning. The latter processes redundant information, particu-
larly in the central areas of the input patches, and therefore would be computation-
ally more expensive to compute. In Chapter 4, we proposed using the non-uniform
patch sampling, a biologically inspired method that does not suffer from either of
these problems. Non-uniformly sampled patches are generated by capturing more
details close the point of interest, and gradually decreasing the sampling rate as we
get further away from the center. Experimental results demonstrate that a single-
scale network with non-uniformly sampled patches significantly outperforms the
same architecture with conventional uniformly sampled patches (0.780 vs. 0.736
Dice, p-value<0.01). More interestingly, we observed that the non-uniform patch
sampling method with a simple single-scale architecture is performing no worse
than the more complicated multi-scale architecture with uniformly sampled patches
(0.780 vs 0.776).

Chapter 5 is devoted to studying the deep transfer learning for transferring the
knowledge learned from a domain to another. MRI is an imaging technique that is
known for its high intensity /contrast variations among (slightly) different scanning
protocols. On the other hand, deep neural networks have been shown to be even sen-
sitive to small amount of noise barely visible to our eyes'®®. Therefore obtaining very
good results on a domain, does not necessarily entail a comparable performance on
another domain with a different scanning protocol. In order to experiment with this,
we trained a convolutional neural network on FLAIR images with 6 mm thick slices
that achieved a Dice score of 0.76 on an independent test set of the same domain. The

same trained network failed on another test set of cases with 3 mm thick slices. We
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observed that by fine-tuning a small number of deep layers, with only a small set of
training cases, transfer learning obtains a considerable advantage over training from
scratch; For instance, using only two training cases, we achieved a 0.63 Dice score
by fine-tuning the last layer, whereas training a network from scratch with the same

two cases obtained a Dice of 0.15.

In Chapter 6, we describe a computer aided detection system we developed for
the detection of lacunes of presumed vascular origin. This is a very subjective and
difficult task due to the similarity of the lacunes to (enlarged) perivascular spaces,
which leaves no definite decision boundary between the two classes in some cases.
We used a two-stage method in which we first removed a vast majority of unlikely
lacune locations using a fast 2D fully convolutional network. After the first-stage,
we employed a more elaborate second-stage 3D convolutional neural network to
reduce the false positives. In order to compare the performance of the proposed
CAD system to the inter-rater variability, four trained raters independently rated the
same set of cases in the test set. An FROC analysis showed that the proposed method
detects 97.4% of the candidates with 0.13 false positives per slice in average, which
is close to the trained human raters. A feasibility study showed that exposing the
CAD detections to a human rater with low sensitivity may considerably increase the

rater’s sensitivity (from 22% sensitivity to 49%).
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In this chapter, we discuss the general aspects of the material presented in the thesis.
We first mention and discuss the major contributions and specifications of our stud-
ies. This is followed by a discussion on the future directions and prospective studies
conducting further research on better understanding the small vessel disease.

6.7.1 Major contributions and specifications

The contributions of this thesis can be considered from different perspectives; Fol-
lowing are the main contributions and characteristics of the research presented in
this thesis:

Intelligent systems for detection of SVD biomarkers: From a medical research
point of view, accurate quantification of imaging biomarkers can be used to better
understand small vessel disease, its underlying factors and the role of these imaging
biomarkers in incidence and progression of small vessel disease as well as its con-
version to more severe neurological disorders such as Dementia. In this thesis, we
described studies for developing reliable automated methods for segmentation and
detection of white matter hyperintensities and lacunes, that are both recommended
to be quantified and evaluated in standards for neuroimaging research for small ves-
sel disease?. Some of these developed methods are already used in researches un-

derstanding the dynamics of cerebral small vessel disease*”~1%.

Towards independent image analysis: The concept of computer aided detection
has been around for several decades since it was first introduced by Winsberg et
al.?® for examining the assistance of computer systems for detecting abnormalities
on mammograms. With the advances in artificial intelligence over the decades, such
as transformation from the rule-based systems to more complex learning classifica-
tion methods (e.g. support vector machines, random forests, boosting algorithms),
as well as the substantial progresses in the computer vision community in intro-
ducing visual feature descriptors, these intelligent systems became more advanced
and accurate than they used to be. With all these advances, many studies showed
that these computer aided detection systems can help increase the sensitivity, speci-
ficity, and exam reading efficiency for the radiologists. However, after the recent
breakthrough of the deep neural networks, we now observe intelligent systems that
obtain performances that are equally as good as human experts or even outperform
them in some tasks!04169188.201 Therefore we might be in a historical period of time
in the field, experiencing a significant transition from computer aided detection to

standalone intelligent systems. Using a reliable standalone computerized system
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for analysis of medical images, not only substantially reduces the health-care costs,
but also benefits from a more objective, consistent analysis of scans. This is partic-
ularly crucial for longitudinal studies, where the assessment of growth or shrinking
of abnormalities, might be highly affected by the subjectivity of human expert mea-
surement. With this in mind, in almost all of the chapters in this thesis, we were
committed to making comparisons to independent human experts and making sure

that the proposed intelligent systems perform at the same level as the experts.

Biologically inspired computation: As a result of billions of years of evolution,
the natural organisms are exhibiting highly complicated, effective and efficient be-
haviors. Therefore, a theme exists in computational sciences, that seeks inspiration
from biological organisms. In the studies presented in this thesis, we tried to use this
theme as much as possible. The used biologically inspired algorithms include convo-
lutional neural networks (in chapter 3-6) and non-uniform patch sampling methods
(chapter 4). CNNs are loosely inspired by the way natural neural networks work. As
shown by the work of Hubel and Wiesel''?, there are neurons in the visual cortex of
the brain that are sensitive to small edges in specific directions. More complex forms
can be represented by a hierarchy of neurons. This is similar to the way feature de-
tectors gradually transform from simple edge detectors in the first CNN layers to
more abstract complicated forms in the deeper network layers.

Our visual system does not uniformly sample the scene we are looking at. At the
time we are gazing at a specific location, we a get a lot of details from that area, but
also some general, less densely sampled information from the surroundings This is a
very efficient way to get information from a large contextual area. Such an approach
was utilized in Chapter 3, and we showed that with this smarter sampling strategy, a
simple single-scale architecture outperforms a much more complex multi-scale net-

work with uniform sampling.

Beyond the success on a single domain: Often while developing intelligent sys-
tems for medical image analysis (and in general for any machine learning system),
we fit a model to the distribution of samples in the training set, hoping that the model
generalizes well to the unseen test set, with the assumption that the test set is drawn
from a very similar distribution. However, in the practice, this assumption does not
hold; MR images can come from a different hospital or research centers with various
scanning protocols, scanner vendors, etc. This results in a different test set distribu-
tion, on which the trained model can not generalize well. A pragmatic solution to
this is to fine-tune the trained model on a small set of training cases from the target

domain. In Chapter 5, we developed and studied such a CNN fine-tuning process
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and showed it can obtain satisfying results on a different test protocol using only
two training scans from the target domain. This suggests that extending analysis
methods to a broader domain may be challenging. Therefore, the medical imaging

community should invest more on transfer learning and domain adaptation.

Context awareness: Another contribution of the work presented in this thesis
is proposing/investigating different techniques for the context awareness of neural
networks. Often basing the decision on a local neighborhood of the structure of inter-
est, CNNs lack the required contextual information for an optimal decision making
progress. In this thesis, we used explicit location features integration, multi-scale
analysis, and non-uniform patch sampling strategy. Adding location features to the
network, (e.g. adding the features to a dense layer) is shown to be very straight for-
ward, efficient and effective, however, it makes the system dependent on a number
of hand-crafted location features. Multi-scale analysis does not suffer from this prob-
lem, as it learns the contextual information from the larger scales, but it increases the
requirement for investigating the architectural design decisions (e.g. on how to fuse
different scales), the complexity of the network and consequently the computational
costs. Non-uniform patch sampling, as discussed in chapter 4, addresses these prob-
lems by varying the sampling rate at different regions of the local neighborhood.
This results in a single patch containing the details of the structure at the center, as
well as spanning a larger context. The drawback of this method is that such a sam-

pling method can not be used in a fully convolutional way.

6.7.2 Future perspectives

In this subsection, we discuss a number of possibilities for future work in this area.
Application-wise extension: One direction toward enriching our understanding

of small vessel disease is to develop intelligent systems for quantification of other

imaging biomarkers, such as perivascular spaces and microbleeds. Specifically the

former still requires more studies on their quantification.

Patient-level analysis: In this thesis, we have mainly focused on developing vox-
el/structure level analysis systems for quantification of imaging biomarkers. Never-
theless, it should be noted that the characterization of imaging biomarkers is not by
itself the final goal. Characterization of biomarkers is rather supposed to be an in-
termediate step towards better understanding the disorders, and learn, for instance,

to predict whether SVD in a patient will lead to more severe pathologies such as
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dementia and stroke or not. Such a predictive model can be obtained by applying
machine learning in a patient-level analysis. This is something we did not try, which
was mainly due to the small size of our dataset. Among the RUN DMC study pop-
ulation, only ~20 patients converted to dementia, which is absolutely not sufficient
for training models, and particularly for training neural networks. It should be noted
that the same dataset size for a voxel-level analysis (e.g. in WMH segmentation) is
sufficient as each scan contains millions of voxels that are potential samples to train a
model on. In order to make a patient-level analysis feasible, it is required that much
larger datasets are formed, which might be possible by a collaborative data prepara-

tion that goes beyond single hospitals, or nations.

Better evaluation: As mentioned earlier in this chapter, with the advent of ad-
vanced machine learning and computer vision techniques, we are witnessing com-
puterized systems for detection/segmentation of abnormalities that are either per-
forming equally as good as the human experts or even surpassing their performance.
An existing challenge, that is becoming increasingly important, is providing better
reference standards for the evaluation of the developed systems. Considering that
we often use human expert annotations as the ground truth for the evaluation, it
might become impossible to demonstrate a better performance of intelligent sys-
tems. For instance, when evaluating the detection system for WMHs presented in
Chapter 2, we observed many cases where the CAD system was detecting tiny le-
sions that were overlooked by both of the human readers. Such a detection was not
rewarded in the performance assessment and also was counted as a false positive. A
recommended approach for future work, that addresses this problem and was also
used in the method presented in Chapter 6, is to include several readers on the test

set, forming a better quality ground truth with their consensus.

Protocol/Scanner invariance: In Chapter 5, we employed transfer learning with
the fine-tuning of the final layers of a deep neural network in order to make sure
the trained model is still suitable on new domains. However, other mechanisms can
be used as well to increase the direct transferability of a model. Of course training
models with datasets that contain training cases from different possible protocols is
another possibility, however, it increases our dependency on a more laborious and
costly data preparation process. A better approach is to apply intensity standard-
ization techniques. Such methods on various domains?*>?** have been shown to be
very effective in combination with CNNs*®. For the WMH detection method de-
scribed in Chapter 2, we developed and utilized a standardization method based on

bivariate Gaussian mixture models and a fuzzy transformation of intensities. As a



104 General discussion

result, we observed in practice that these models can much better generalize to scans
with different scanning protocols (e.g. RUN DMC follow-up protocols). However,
due to non-optimal convergence of the Gaussian mixture model, the standardization
method was producing artifacts in a small percentage of cases, therefore we did not
continue to use the standardization method. Developing effective and more robust
standardization methods is a very beneficial future direction for computerized detec-
tion/segmentation/diagnosis on brain MR images. Another possibility that was not
investigated in the methods presented in this thesis, is the intensity data augmenta-
tion. One may apply slight intensity manipulation operations such as the addition of
Gaussian noise, scalings, shifting, or other simple intensity transformations. Includ-
ing such variations in the dataset encourages the model to learn intensity-invariant
representations. Unsupervised adversarial training for domain adaptation®* is an-
other possibility, though it requires (unlabeled) data from other possible protocols.
In this approach, an auxiliary network, called the discriminator, is trained with inter-
mediate feature maps of the main network, aiming to discriminate between inputs
from different domains. Success rate of the discriminator network is added as an ex-
tra term to the loss of the main network, motivating it to learn domain-independent

features.
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In de hoofdstukken van dit proefschrift worden verscheidene methoden omschreven
om de white matter hyperintensities (WHM) en lacunes, beide imaging biomarkers
voor small vessel disease (SVD), te kwantificeren. In dit hoofdstuk geven we een
algemene samenvatting van dit proefschrift en gaan we iets dieper in op de resul-
taten per hoofdstuk. SVD is een veelvoorkomende neurologische stoornis onder
ouderen en gaat vaak gepaard met milde symptomen zoals cognitieve achteruit-
gang, depressie, motor- en loopstoornissen. White matter hyperintensities, lacunes
van vermoedelijke vasculaire oorsprong, microbloedingen in de hersenen, perivas-

culaire ruimten en hersenatrophie zijn imaging biomarkers die SVD* beduiden.

Hoofdstuk 2 omschrijft een nieuw detectiesysteem voor white matter hyperin-
tensities. Deze WHMSs komen voor in een breed scala van vormen en groottes®.
Voor multiple sclerose en andere vormen van WHMs worden er in literatuur ver-
scheidene segmentatiemethoden omschreven. In tegenstelling tot onze methode
zijn bijna al deze methoden geoptimaliseerd om overlappingscriteria zoals de Dice
en de Jaccard similarity scores te maximaliseren. Kleine lesies voegen weinig toe
aan deze overlappingscriteria, hebben een verschillende morphologische en inten-
siteitsdistributies en zijn mede hierdoor moeilijker te detecteren. Deze kleine lesies
worden vaak gemist door de huidige algoritmes. De methode gepresenteerd in
hoofdstuk 2 omschrijft een manier om lesies van verschillende groottes te detecteren.
We doen dit door zorgvuldig de features, classifiers en evaluatiemetrieken op de
grootte aan te passen. We hebben twee verschillende classifiers voor respectievelijk
de kleine als grote lesies getraind met behulp van de Adaboost classifier zodat we
meer nadruk kunnen leggen op het leren van moeilijke (kleinere lesies) voorbeelden.
Hierbij hebben we gebruik gemaakt van de FROC analyse om evenveel aandacht te
schenken aan alle lesies, onafthankelijk van hun grootte. Als een resultaat hiervan
bekomen we een systeem die een sensitiviteit bereikt van 80% met een gemiddelde
van 37 fout positieven per volume. Hier is ook aangetoond dat dit resultaat dicht bij
twee onafhankelijk experts ligt (exp1l: 93% sensitiviteit met gemiddeld 55 foutposi-

tiven, exp2: 77% sensitiviteit met gemiddeld 27 foutpositiven per volume).

Hoofdstuk 3 beschouwt het WHM-segmentatieprobleem met de vaker gebruikte
Dice similarity score als evaluatiemetriek. Hierbij gebruiken we de doorbraken bin-
nen de deep learning technologie waarbij een hierarchische verzameling van (opti-
male) features worden geleerd. Alhoewel deze convolutionele neurale netwerken
erg geschikt zijn om locale eigenschappen goed te kwantificeren zijn hebben ze het
nadeel dat ze niet voldoende rekening houden met contextuele informatie waar-
door de segmentatie suboptimaal is. Om deze contextuele informatie toe te voegen
hebben we twee verschillende methoden onderzocht: oftwel combineren we infor-

matie op verschillende schalen, of we integreren explicitie locatiefeatures. Voor het
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combineren van de verschillende informatiestromen hebben we geéxperimenteerd
met verschillende fusiestrategién. In onze experimenten hebben we gemerkt dat
zowel de integratie van de locatiefeatures en een late fusiestrategie van de multi-
scale analyse de resultaten significant verbeteren in vergelijking met een simpele
single-scale CNN. We hebben aangetoond dat met het combineren van beide meth-
oden onze methode een Dice score bereikt van 0.79 waarbij er geen statistisch signif-

icant verschil is met de Dice score van 0.80 van een onafhankelijke expert.

In hoofdstuk 3 hebben we twee oplossingen voorgesteld om meer contextuele
informatie aan een CNN toe te voegen om de white matter hyperintensities te seg-
menteren. Dit deden we door middel van het toevoegen van expliciete locatiefea-
tures en een multi-scale analyse. Desondanks kunnen er bedenkingen bij beide
methoden geplaatst worden. De eerste methode heeft voordeel bij het toevoegen van
de expliciete features, een strategie die niet volledig in overeenstemming is met de
tilosofie achter deep learning. De tweede methode neemt ook redundante informatie
mee, met name in het centrale gebied van de patches en zal hierdoor computationeel
onnodig duur worden. Om deze reden stellen we in hoofdstuk 4 een niet-uniforme
sampling voor. Dit is een biologisch geinspireerde methode die beide problemen niet
heeft. De niet-uniform gesamplede patches worden gegenereeerd door meer detail
te verzamelen rond het punt van interesse en er worden gradueel minder patches
gesampled naarmate we verder van het centrum bewegen. Experimenten tonen aan
dat een single-scale netwerk met deze niet-uniform gesamplede patches significant
beter is dan dezelfde architectuur met de meer conventionele methode met uniform
gesamplede patches (0.780 vs 0.736 Dice, p-waarde< 0.01). Nog interessanter is het
feit dat de niet-uniforme sampling aanpak niet minder effectief is dan de veel in-
gewikkeldere manier van een multi-scale architectuur waarbij er uniform gesampled
wordt (0.780 vs 0.776).

Hoofdstuk 5 spenderen we aan het bestuderen van deep transfer learning om
de kennis van één domein naar het andere te transformeren. MR is een beeldvor-
mende techniek die bekend staat voor zijn hoge intensiteits /contrast-variaties tussen
(licht) verschillende scanprotocollen. Aan de andere kant is er ook bekend dat diepe
neurale netwerken erg gevoelig zijn voor kleine hoeveelheden ruis die nauwelijks
met het menselijk oog detecteerbaar is'°. Hierdoor is het niet vanzelfsprekend dat
als een model op het ene domein goed werkt, dit ook op een andere domein zal
werken, bijvoorbeeld een domein met een verschillend scanprotocol. Om hier mee
te experimenteren hebben we eerst een convolutioneel neuraal netwerk getraind op
FLAIR beelden welke een slicedikte hadden van 6mm. Hier bereikten we een Dice
score van 0.76 op een onafhankelijke testset van hetzelfde domein. Hetzelfde ge-

trainde netwerk faalde op een andere testset van gevallen met een slicedikte van
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3mm. We merkten op dat het fine-tunen van een klein aantal van de diepere lagen,
met slechts een aantal voorbeelden een significant voordeel heeft boven het trainen
vanaf nul. Als voorbeeld hebben we door fine-tunen op twee voorbeelden een Dice
score bereikt van 0.63 door enkel de laatste laag te fine-tunen, terwijl het netwerk
van nul trainen met deze twee voorbeelden slechts een Dice score gaf van 0.15.

In hoofdstuk 6 bestuderen we een computer-geassisteerd detectiesysteem om la-
cunes van vermoedelijke vasculaire oorsprong te detecteren. Dit is een zeer subjec-
tieve en ingewikkelde taak door de sterke gelijkenis tussen lacunes en (vergrootte)
perivasculaire ruimten, welke in sommige gevallen geen duidelijke decision bound-
ary tussen de twee klassen laat. We maakten hierbij gebruik van een tweestadi-
ummethode waar we in het eerste stadium het grootste deel van de mogelijke la-
cunelocaties reduceerden met een snel 2D volledig convolutioneel netwerk. Na dit
eerste stadium maakten we gebruik van een ingewikkelder 3D convolutioneel neu-
raal netwerk om het aantal foutpositieven te verlagen. Om de methode van ons
CAD-systeem te vergelijken met de interrater variability hebben we vier getrainde
lezers dezelfde gevallen in de testset laten annotateren. Een FROC-analyse toonde
aan dat de door ons voorgestelde method 97.4% van alle kandidaten met gemiddeld
0.13 foutpositieven per slice vindt. Een feasibility studie toonde daarnaast aan dat
als we deze CAD-detecties voorleggen aan een menselijke lezer met een lagere sensi-
tiviteit dit de de detecties van deze lezer significant verbeterd (van 22% sensitiviteit
naar 49%).
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