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Abstract. Most real-world datasets are characterized by long-tail dis-
tributions over classes or, more generally, over underlying visual rep-
resentations. Consequently, not all samples contribute equally to the
training of a model and therefore, methods properly evaluating the im-
portance/difficulty of the samples can considerably improve the training
efficiency and effectivity. Moreover, preserving certain inter-pixel/voxel
structural qualities and consistencies in the dense predictions of semantic
segmentation models is often highly desirable; accordingly, a recent trend
of using adversarial training is clearly observable in the literature that
aims for achieving higher-level structural qualities. However, as we argue
and show, the common formulation of adversarial training for seman-
tic segmentation is ill-posed, sub-optimal, and may result in side-effects,
such as the disability to express uncertainties.

In this paper, we suggest using recently introduced Gambling Adver-
sarial Networks that revise the conventional adversarial training for se-
mantic segmentation, by reformulating the fake/real discrimination task
into a correct/wrong distinction. This forms then a more effective train-
ing strategy that simultaneously serves for both hard sample mining as
well as structured prediction. Applying the gambling networks to the
ultrasound thyroid nodule segmentation task, the new adversarial train-
ing dynamics consistently improve the qualities of the predictions shown
over different state-of-the-art semantic segmentation architectures and
various metrics.

Keywords: adversarial training - hard sample mining - structured pre-
diction - ultrasound thyroid nodule segmentation.

1 Introduction

Semantic segmentation is arguably among the longest-standing and most impor-
tant problems in medical image analysis. Despite the significant improvements
in semantic segmentation, due to much better representation learning capabil-
ities of modern deep learning architectures [1], the task is still facing inherent
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challenges that remain not fully resolved. In the following, we briefly discuss
two such important challenges, namely the hard sample mining and structured
prediction.

Hard sample mining Most of the real-world datasets exhibit long-tail dis-
tributions as certain categories are observed much more frequently than others;
This issue becomes even more pronounced in the world of medical image analysis,
where the pathological observations are generally much less abundant compared
to the normal. Arguing beyond the class-imbalance problem, even within the
same category of a frequent or an infrequent class, not all samples are of the
same difficulty and therefore are not equally informative for the model to attend
while being trained [2]. Thus, identically treating different samples is potentially
inefficient and should be avoided. While some methods modify the sampling dis-
tribution of the training data [3], many others, including [4-10], approximate
the sampling process by re-weighting the sample contributions to the objective
function to be minimized. For instance, class-based re-weighting, among the most
simple and popular approaches, uses the class infrequency as a proxy metric for
the sample difficulty/importance. Some other approaches [4,5,11,12] directly
use the corresponding errors as a measure of sample importance. Such methods,
however, may suffer from their strategy when dealing with noisy labels [13].

Structured prediction Semantic segmentation models not only do need to op-
timize for per-pixel accuracy, but also certain inter-pixel/voxel structural qual-
ities should be preserved in many cases. For instance, the predictions should
be smooth, preserve certain shapes, geometries, and be semantically consistent.
Besides using graphical models such as dense CRFs [14], adversarial semantic
segmentation [15,16,7,17-21] has been widely employed recently, where a dis-
criminator is incorporated to provide higher-level feedback by learning to distin-
guish model predictions (fake) from the GT annotations (real). However, GAN
models are notoriously difficult to train and are very sensitive to the hyperpa-
rameters. More importantly, a major issue when applying adversarial training
to semantic segmentation is an inherent triviality of the distinction between real
and fake predictions using only low-level cues. An obvious example of this is
using value-based clues to contrast the soft values of the model predictions with
the bimodal sharp GT labels. This not only hinders learning to improve on high-
level structural qualities but also pushes the model to be overconfident, even in
the presence of high uncertainties, to close this low-level unimportant gap.

In this paper, we propose to use Gambling adversarial networks [6], a recent
method that tackles the aforementioned shortcomings and simultaneously serves
as an adversarial hard sample mining and structured semantic segmentation
strategy. We demonstrate that applying the proposed method to the task of
ultrasound thyroid nodule segmentation, consistently improves results compared
to the state-of-the-art hard sample mining and structured prediction approaches,
measured over various segmentation architectures and metrics.
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2 Methods

Consider D = {(xi,yi)}ie{luN , a dataset of N supervised samples in which
' € RW*H and o € {0,1}W*H*C represent the i-th image and the corre-
sponding pixel-wise one-hot labels of size W x H on a C-class problem. A stan-
dard approach to solve such a problem is to train a deep neural network Fy by
minimizing a (weighted) aggregation of pixel-wise loss terms, e.g., categorical
cross-entropy:

1 i i i
Lee(z,y:0) = TWxHxXN Z Zw(a: Y )ik Yj.k,c (Fy(2")j,k,c)s (1)
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where w(x?,y?) is a sample weighting function. The weighting function w is, in
a vast majority of cases, a uniform weighting of 1 for each sample or is set based
on class frequencies as a heuristic, agnostic to the structure and difficulty of the
input sample 2. On the other hand, focal loss [4] sets this weighting based on
the sample error, but still ignores the structure in samples x*:

Weoeat (@, Y )jk = D Yhp (1= Fo(2")j k)7, (2)

Here ~ is a hyperparameter factor that controls the extent to which the faultier
sample predictions would contribute more to the final loss. Adversarial confi-
dence learning [7], a recently proposed method, suggests to use sample confi-
dences taken from a discriminator Dy, trained to distinguish GT labels (real)
from the network predictions (fake) to extract such sample weighting function:

Weont (', ")k = (1= Dy (a', Fy("))j£)7- 3)

Meanwhile, a multitude of methods further add adversarial loss terms by incor-
porating discriminators distinguishing real and fake predictions, to improve the
structural qualities of the predictions:

L(x,y;0,0) = Lee(,y50) + aLlaav(z,y;0,0), (4)

where the adversarial loss is either computed with the standard non-saturated
cross-entropy loss [15] as Laav(7,y; 0, ¢) = E; In(Dy (2", Fy(z?))), or as a distance
to be minimized in the embedding space [16,21] mapped by the discriminator:
Laav(,y;0,0) = E; || Dy (2%, Fp(x?)) — Dg(x, y*)||. However, as discussed, there
is an inherent ill-posedness in the real/fake distinction task for semantic segmen-
tation. Therefore, we propose to use gambling adversarial nets [6], reformulating
the real/fake discrimination task into a correct/wrong distinction, to overcome
this shortcoming.

This is achieved by replacing a conventional discriminator with a gambler model
(G,) generating dense W x H betting/investment maps, where G, (2%, Fp(x")); x,
i.e. the betting map at position (j, k), aims to predict how likely the predic-
tion Fy(x?) is wrong (rather than fake). The gambler attempts to maximize the
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weighted cross-entropy loss for the segmenter network as in Equation (1), where
its betting map forms the weight terms (wgam ). This translates into the following
loss function for the gambler:

1 1 ) %
Lo(,950,0) = oy D O Waam (1)k Y. MFp(@)jke)s (5)
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A trivial solution now for the gambler to minimize its loss is to infinitely bet
on every single location. To prevent this, we make the analogy to a real-world
gambler complete, by giving the gambler a limited budget, so that the gambler
needs to learn the mistake patterns to efficiently distribute its limited budget.
This is obtained by spatially normalizing the betting maps, in the following form:

er(zi)F9($i))j,k+B
Zm n BGw(l'ivFS (%)) m,n+B’ (6)
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where f is a regularizing smoothing factor, ensuring that the weights are smoothly
distributed over the different samples. The segmenter network Fy is involved in
a minimax game:

Li(z,y; 0,0) = —Lg(x,y; 0,0). (7)

Note that with such an adversarial game between the semantic segmentation
model and the gambler network, the proposed method implements two strategies,
hard-sample mining as well as improving structural qualities. Note that using
this formulation, gambling nets do not suffer from the inherent problems of
real/fake distinction, e.g. value-based discrimination. Structural inconsistencies
are reliable investments and often easy-to-find clues for the gambler to bet on;
therefore the resulting gradients will encourage the segmenter network to avoid
structurally wrong predictions. An overview of the gambling adversarial nets is
presented in Figure 1.

Notice that in contrast to all the aforementioned adversarial methods, our
critic, i.e. the gambler, never perceives real ground-truth images as input and
therefore learns the mistake patterns only through the structure of the model
predictions, in combination with the input image. We argue that this an im-
portant aspect in not letting the critic learn to misuse some of the inherent
and sometimes even desirable discrepancies between the GT labels and model
predictions, such as soft values and uncertainties.

3 Experimental Setup

We evaluate and compare the proposed method with focal loss [4] and adversar-
ial confidence learning [7, 8], as well as adversarial training [15] and SegAN [16],
representing the hard sample mining and structured prediction literature respec-
tively. To ensure fair comparisons, all the common hyperparameters are kept the
same and the models only differ in the corresponding loss formulation, and the
specific hyperparameters are tuned separately. To show the consistency of the
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Fig. 1: A schematic of the gambling adversarial networks for semantic segmen-
tation, where the node marked with C represents concatenation operation. Note
the two gradient flows specified with the red dashed lines, A and B. While the
gradients on path A support hard sample reweighting, the gradients on path B
help improving structural qualities as containing information on why the gambler
has picked certain regions to upweight.

comparison beyond a single network architecture, all the models are trained
and evaluated with three state-of-the-art semantic segmentation network archi-
tectures, namely U-net [22], PSPNet [23] with ResNet-101 [24] backbone, and
DeepLabV3+ [25] with an Xception [26] backbone network. The details of the
training process and the hyperparameters are available in the supplementary
materials. Please note that all reported metrics are averaged over three runs to
suppress possible fluctuations due to random initialization.

3.1 Dataset

The dataset used in this study is obtained from the TN-SCUI challenge [27]
on Thyroid nodule segmentation and classification on ultrasound images. The
dataset contains 3644 images of various resolutions each provided with a binary
mask of the corresponding thyroid nodule, annotated by experienced doctors.
We divide the data into training, validation, and test sets of 80%, 10%, and
10%. We tune the models on the validation set, and then use the full training
and validation samples to train the final models to be evaluated on the test set.

3.2 Metrics

In addition to using Dice similarity score, and Jaccard index, widely used for
semantic segmentation, we further assess our trained models with BF-score [28§],
Chamfer distance and Hausdorff distance that are commonly used in the struc-
tured semantic segmentation literature. These metrics mainly deal with the qual-
ity of prediction boundaries that, compared to pixel-wise metrics, better correlate
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Table 1: Comparison of the different methods on the U-net [22] architecture.
The metrics are averaged over three runs.

Loss formulation Dice 1 Jaccard T BF-score T Chamfer] Hausdorff]
Cross-entropy 83.9 72.2 55.8 9.8 31.9
Cross-entropy + adv.  83.3 71.4 53.6 9.4 32.4
SegAN 80.4 67.2 41.8 14.5 39.3
Focal loss 83.5 71.7 54.0 10.2 32.3
Confidence adv. 83.6 71.9 54.8 9.9 31.8
Gambling adv. 84.8 73.6 59.8 9.0 30.2

with structural qualities. These metrics are computed as follows:

dchamter(X,Y) = Z { X Z min d(z,y), |Y| Z min d(z,y } (8)

cex ¥ yey yey reX
1
d-(X,Y)=— mind(z,y) < 7], 9
(X,Y) |X|z€ZX[y€Y (z,y) <7] 9)

A (X,Y) +d. (Y, X)’

where X and Y are the boundaries of the corresponding classes for the pre-
dictions and the ground-truth and 7 represents a max tolerable distance. Note
that the Hausdorff distance is quite similar to the Chamfer distance with the
difference that the maximum of surface distances is computed rather than the
average, which makes it more sensitive to the outliers. To assess the ability of
the model to express uncertainties, we also report the mean maximum class
likelihood (MMCL), representing the average likelihood of the most likely class,
where the max likelihoods are averaged across the spatial dimensions and differ-
ent samples.

4 Experimental Results and Discussion

Tables 1, 2 and 3 show the Dice, Jaccard, BF-score, Chamfer and Hausdorff
distance metrics on the test set, on models trained with U-net, PSPNet and
DeepLabV3+ architectures, respectively. Table 4 demonstrates and compares
the MMCL values for the different methods. Extensive qualitative comparisons
are available in Figures 1, 2, and 3 in the supplementary materials. As observed
in the reported empirical results, models using gambling adversarial nets as the
loss formulation consistently outperform the other adversarial and hard sample
mining methods over different network architectures and metrics. In the follow-
ing, we present a brief analysis for comparing the gambling nets to each of the
other methods.
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Table 2: Comparison of the different methods on the PSPNet [23] architecture,
with Resnet101 backbone. The metrics are averaged over three runs.

Loss formulation Dice 1 Jaccard T BF-score T Chamfer] Hausdorff]
Cross-entropy 86.6 76.4 65.4 6.9 23.8
Cross-entropy + adv.  85.7 74.9 64.4 7.6 26.0
SegAN 85.7 75.1 62.9 7.1 24.2
Focal loss 86.8 76.7 64.8 7.1 23.6
Confidence adv. 85.9 75.3 63.8 7.6 25.1
Gambling adv. 87.4 77.6 68.5 6.7 22.1

Table 3: Comparison of the different methods on the DeeplabV3+ [25] archi-
tecture with an Xception [26] backbone. The metrics are averaged over three
runs.

Loss formulation Dice T Jaccard T BF-score © Chamfer| Hausdorff]
Cross-entropy 86.6 76.4 64.8 7.3 24.7
Cross-entropy + adv.  87.2 77.4 66.6 8.0 43.2
SegAN 86.9 76.8 66.5 6.8 23.1
Focal loss 86.3 76.0 64.6 7.3 24.2
Confidence adv. 86.5 76.2 64.7 7.2 23.3
Gambling adv. 87.5 7.7 69.3 6.5 21.6

Table 4: The mean maximum class likelihoods from U-net reported for the dif-
ferent training methods.

Loss formulation CE Focal CE + Adv. SegAN Gambling
MMCL 0.846  0.705 0.930 0.985 0.862

Focal loss Even though a normalized focal error map can be thought of as the
minimization solution for the problem that the gambler deals with, training the
segmenter network with the gambler sample weights has two clear advantages:
Firstly, as illustrated in Figure 1, in addition to the plain up-weighting of the
difficult samples, the gambler also provides structural information, representing
why certain areas are considered investment-worthy. Secondly, focal loss can
suffer from noisy labels, where a possibly correct prediction from the model is
harshly penalized due to a noisy label. The gambling nets, on the other hand,
suffer less from this, as the possibly incorrect labels only indirectly influence
the resulting weights. Therefore as long as the gambler network is not overfitted
to the noise patterns, the training framework is more resilient to label noise
compared to the focal loss.
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(c) (d) ()

Fig.2: Sample comparison of the obtained uncertainty maps from adv. confi-
dence learning and adv. gambling nets. (a) input image, (b) adv. conf. learning
prediction, (c¢) uncertainty map from adv. conf. learning (d) prediction from
gambling nets, (e) betting map from the gambler.

Conventional adversarial training As suggested by the MMCL comparison
in Table 4, the critic in both adversarial models push the model to fake to be more
certain. However, we can also note that the segmentation models do not fully
close the value-based gap, likely because otherwise, the pixel-wise loss would
harshly penalize a confident wrong prediction. Therefore, with the remaining
gap, the discriminator still has an easy job distinguishing the real and fake
and thus will likely not go beyond such low-level remaining clues. This would
obviously hinder learning higher-level structural qualities and consistencies. In
contrast, a smooth likelihood, e.g. 0.8, is not a good investment for the gambler
as long as the prediction is correct.

Adversarial confidence learning Even though adversarial confidence learn-
ing [7] is the closest work to the gambling networks, in the regard that it simi-
larly aims to extract the samples’ difficulty weights in a learnable fashion, there
is still a major difference in how the critic is trained. This method still trains
a discriminator to distinguish the real and fake labels. Apart from the argued
ill-posedness of such formulation for semantic segmentation, we found it very
difficult in practice to get meaningful confidence maps from the discriminator.
As visible in Figure 2, the uncertainty map values were almost always very close
to one. This can be attributed to the confidence model loss formulation [7] that
forces the model to predict fake at ‘every’ spatial position in the network pre-
dictions; therefore finding any single clue, the confidence model is encouraged
to propagate the fake prediction all over the spatial locations, no matter if the
corresponding predictions were correct or wrong.
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Conclusion and Future Work

In this paper, we showed that a simple but fundamental reformulation of the
critic in adversarial training can consistently and effectively improve semantic
segmentation results on the thyroid nodule segmentation task and the advan-
tages were intuitively and empirically analyzed. We believe that not only using
gambling nets as a ‘learned’ hard sample learning policy is potentially useful for
(medical) image segmentation tasks, but also can be studied in combination with
other image recognition tasks such as detection and classification; for instance
in presence of controlled noise for comparison with other hard sample mining
methods, which is left as future work.
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