EL-GAN: Embedding Loss Driven Generative
TomtTom® Adversarial Networks for Lane Detection
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Overview: Structured Prediction

ConvNets have been successfully applied to semantic segmentation problems. However, there are
many problems that are inherently not pixel-wise classification problems but are frequently for-
mulated as semantic segmentation. In dense prediction (e.g for lane marking detection) certain
structures/qualities often need to be preserved. E.g. convergence in the vanishing point, smooth-
ness and continuity, at reasonable distance to each other, consistent with the representations of

other objects 1n the 1mage, etc.
labels regular CNN EL-GAN

Pixel level losses are not inherently able to model and enforce these qualities.
other methods 1n the literature often address this with:

* Hand-crafted post-processing: ad-hoc and domain specific, often computationally expensive.

* Conditional random fields: partial coverage of consistencies, extra computational burden at
inference time.

* Additional engineered loss terms: Ad-hoc and domain specific, often tricky to formulate
differentiable loss terms.

Baseline: Adversarial Training for Dense Prediction

Add an extra adversarial loss term to represent how plausible (structure preserving) the predictions
are [1, 2]:
»Cgen(xa Y, egena edisc) — »Cﬁt(G(x; ngn)y y) + )\»Cadv<G(x§ 9gen)§ £, edisc)a (1)

where Lgq; represents pixel-wise binary cross entropy loss and L.y, i1s formulated with
Lice(D(G(; Ogen); Odisc), 1). At the same time, the discriminator minimizes the following loss:

Edisc(xa Y, egena 9disc> — Lbce(D(G(ZE; Qgen); Qdisc)a O) =+ Ebce(D(yQ 9disc>7 1) (2)
Two issues with the above adversarial formulation:
@ Direct dependence on discriminator’s interpretations: The feedback given to the generator

only stems from the discriminator’s representations of notions of fakeness and reality, which
might be misleading if the learned discrimination 1s not realistic.

@ Ignoring the image/label pairing information: The adversarial training is not leveraging the
the valuable 1mage/label pairing information available in the supervised learning scenarios.

Our Contribution: Embedding Loss for Adversarial Training

The 1dea 1s to leverage the labels to steer the adversarial training and base the adversarial loss on
high-level structures/characteristics of labels:

Lgen(xa Y; egena edisc) — £ﬁt(G(x3 ngn)a y) T )\Eadv(G($3 egen)a Y, &, @disc)a (3)

Eadv(G(:C; Qgen)a Y, X, QdisC) — HDG(ya L, ediSC) o De(gJ £, HdiSC) HQ ) (4)
where D, represents embeddings extracted from a certain layer in the discriminator network.
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Figure: Illustration of the novel training set-up for the generator loss: left for a conventional
GAN (Equations 1, 2), right when using the embedding loss (Equations 3, 4)
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Figure: Schematic of EL-GAN architecture

Experimental Results
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Figure: Qualitative comparison of EL-GAN to regular CNN.
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Figure: EL-GAN tested on satellite imagery road extraction.

Table: Results on TuSimple lane marking validation set

Method Post-processing  Accuracy (%) FP  FN

Baseline (no GAN) basic 86.2 0.089 0.213
Baseline (no GAN) basic++ 94.3 0.084 0.070
EL-GAN basic 93.3 0.061 0.104
EL-GAN basic++ 94.9 0.059 0.067

Table: TuSimple lane marking challenge leaderboard (test set) as of March 14, 2018

Rank Method Extra data, Acc. FP FN
#1 leonardoli ) 96.87 0.0442 0.0197
#2 Pan et al. [3] Yes 96.53 0.0617 0.0180
#3 aslarry ? 96.50 0.0851  0.0269
#5 Neven et al. [4] No 96.38 0.0780 0.0244
H#6 11 ? 96.15 0.1888 0.0365
#14 Baseline (no GAN) No 94.54  0.0733 0.0476
#4 EL-GAN No 96.39 0.0412 0.0336
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Figure: Ablation study on different adversarial loss terms. d: discriminator, g: generator, emb:
embedding loss, ce: binary cross entropy loss.
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