Weakly-Supervised Semantic Segmentation using End-to-End Adversarial Erasing

Semantic Segmentation

Types of supervision

Full Supervision

Image

Person

Weak Supervision

Points

Person

Person

Scribbles

Attention Maps

Provide object localization

Adversarial Erasing

Iterative erasing of the attention map

Image from: Wei, Yunchao, et al. "Object region mining with adversarial erasing: A simple classification to semantic segmentation approach." *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*. 2017.

Issues with Adversarial Erasing

- Multiple training and inference steps
- Fusion of attention maps
- Weight sharing
- Saliency estimation methods
- Bloated with bells and whistles
- "Adversarial"

End-to-End Adversarial Erasing

Our proposed approach

$$\mathcal{L}_{\text{loc}}\left(G_{\varphi}(x_i), y_i\right) = -\frac{1}{C} \sum_{c} y_{i,c} \ln\left(G_{\varphi}(x_i)\right) + (1 - y_{i,c}) \ln\left(1 - G_{\varphi}(x_i)\right)$$

$$\mathcal{L}_{ ext{adv}}\left(F_{ heta}(ilde{x}_{i,c}),y_i
ight) = -rac{1}{C}\sum_{c}y_{i,c}\,\ln\left(F_{ heta}(ilde{x}_{i,c})
ight) + (1-y_{i,c})\,\ln\left(1-F_{ heta}(ilde{x}_{i,c})
ight)$$

$$\mathcal{L}_{am}(\tilde{x}_i, y_i) = \frac{1}{C} \sum_{c \in y_i} F_{\theta}(\tilde{x}_{i,c})$$

$$\mathcal{L}_{\text{reg}}(x_i, y_i) = \frac{1}{W \times H \times C} \sum_{c \in y_i} \sum_{j,k} A_c(x_i)_{j,k},$$

Issues with Adversarial Erasing

And how we resolve them

- Multiple training and inference steps
- Fusion of attention maps
- Saliency estimation methods
- Weight sharing
- Bloated with bells and whistles
- "Adversarial"

- Trained end-to-end
- Learnable attention map
- Regularization loss
- Two distinctly trained networks
- Simple and integrable
- Truly adversarial

Results

Segmentation performance

α	mIoU	Precision	Recall
0	41.37 ± 0.26	58.26 ± 0.50	58.18 ± 0.66
0.01	$\textbf{42.51} \pm \textbf{0.41}$	57.79 ± 0.72	60.88 ± 0.52
0.05	$\textbf{43.89} \pm 0.40$	$\textbf{54.78}\pm 1.03$	68.13 ± 1.51
0.1	$\textbf{42.88} \pm \textbf{0.99}$	$\textbf{52.68} \pm \textbf{2.30}$	69.31 ± 1.84

$$\mathcal{L}_{total} = \mathcal{L}_{loc} + \alpha \mathcal{L}_{am} + \beta \mathcal{L}_{reg}$$

Integrability

Pixel-level Semantic Affinity (PSA) End-to-End Adversarial Erasing (EADER)

	CAM		AffinityNet	DeepLabV3+	
Model	mIoU	Precision	Recall	mIoU	mIoU
PSA	46.8	60.3	66.7	58.7	60.7
PSA w/ EADER	48.6	61.3	68.7	60.1	62.8

	Vali	Validation	
		dation	
Class	PSA	EADER	
background	86.7	88.2	
aeroplane	53.2	54.9	
bike	29.1	31.3	
bird	76.7	84.1	
boat	44.2	58.2	
bottle	67.7	70.9	
bus	85.2	83.0	
car	72.4	76.2	
cat	71.7	82.1	
chair	26.7	24.4	
cow	76.5	80.6	
dining table	40.9	35.8	
dog	72.2	80.7	
horse	68.2	76.4	
motorbike	70.2	73.7	
person	66.4	70.8	
potted plant	37.8	15.4	
sheep	80.9	77.2	
sofa	38.5	34.6	
train	62.8	66.4	
tv	45.4	52.6	
mean	60.7	62.8	

Visual Results

Segmentation masks

Comparison

To Adversarial Erasing methods

Method	Supervision	Validation	Test
AE-PSL[17]	$\mathcal{I} + \mathcal{S}$	55.0	55.7
GAIN [20]	$\mathcal{I}+\mathcal{S}$	55.3	56.8
DCSP [85]	$\mathcal{I} + \mathcal{S}$	60.8	61.9
SeeNet [22]	$\mathcal{I} + \mathcal{S}$	63.1	62.8
ACoL [21]	\mathcal{I}	56.1	_
EADER (Ours)	\mathcal{I}	62.8	63.8

[17] IWei, Yunchao, et al. "Object region mining with adversarial erasing: A simple classification to semantic segmentation approach." *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*. 2017.

[20] Li, Kunpeng, et al. "Tell me where to look: Guided attention inference network." *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*. 2018.

[21] Zhang, Xiaolin, et al. "Adversarial complementary learning for weakly supervised object localization." *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*. 2018.

[22] Hou, Qibin, et al. "Self-erasing network for integral object attention." Advances in Neural Information Processing Systems. 2018.

[85] Chaudhry, Arslan, Puneet K. Dokania, and Philip HS Torr. "Discovering Class-Specific Pixels for Weakly-Supervised Semantic Segmentation."

Conclusion

End-to-End Adversarial Erasing

- A simple formulation that is agnostic to neural network architecture, attention map generation method and does not require saliency masks
- Easily integrable into existing methodologies
- Outperforms all existing adversarial erasing methods
- Outperforms many existing weakly-supervised semantic segmentation methods and even some fully-supervised ones.
- We hypothesize that better performance can be obtained by integrating it into a better performing baseline

Thanks!

Code available online: https://github.com/ErikStammes/EADER

Algorithm 1: End-to-end adversarial erasing (EADER)

```
Data: Training set \mathcal{D} = \{x_i, y_i\}_{i=1}^N, parameters \alpha, \beta
Result: Segmentation masks S
while training has not converged do
     Forward image through localizer \hat{y}_i^{\text{loc}} \leftarrow G_{\varphi}(x_i);
     Generate attention map a_{i,c} \leftarrow A_c(x_i);
     Generate mask m_{i,c} \leftarrow M_c(x_i);
     Erase mask from image \hat{x}_{i,c} \leftarrow \text{erase}(x_i, m_{i,c});
     Forward erased image through adversarial \hat{y}_i^{\text{adv}} \leftarrow F_{\theta}(\hat{x}_{i,c});
     if train localizer then
           Compute localizer loss \mathcal{L}_{loc} \leftarrow \mathcal{L}_{loc}(\hat{y}_i^{loc}, y_i);
           Compute attention mining loss \mathcal{L}_{am} \leftarrow \mathcal{L}_{am}(\hat{y}_i^{adv}, y_i);
           Compute regularization loss \mathcal{L}_{\text{reg}} \leftarrow \mathcal{L}_{\text{reg}}(a_{i,c});
           Compute total loss \mathcal{L}_{total} \leftarrow \mathcal{L}_{loc} + \alpha \mathcal{L}_{am} + \beta \mathcal{L}_{reg};
           Update \varphi w.r.t \mathcal{L}_{total};
     else
           Compute adversarial loss \mathcal{L}_{adv} \leftarrow \mathcal{L}_{adv}(\hat{y}_i^{adv}, y_i);
           Update \theta w.r.t \mathcal{L}_{adv};
     end
end
for i \leftarrow 1 to N do
     Generate segmentation mask S_i \leftarrow \arg\max(a_i);
end
```

Method	Feature Extractor	Fully Supervised Model (Backbone)	Supervision	Validation	Test
FCN [28]	-	(VGG16)	\mathcal{F}	-	62.2
WideResNet-38 [30]	-	(WideResNet-38)	${\cal F}$	80.8	82.5
PSPNet [5]	-	(ResNet-101)	${\cal F}$	-	82.6
DeepLabV3+ [4]	-	(Xception-65)	${\cal F}$	84.6	87.8
SN_B [53]	VGG-16	DeepLab (VGG-16)	I + S	41.9	43.2
AE-PSL[17]	VGG-16	DeepLab (VGG-16)	$\mathcal{I} + \mathcal{S}$	55.0	55.7
Oh et al. [55]	VGG-16	DeepLab (VGG-16)	$\mathcal{I} + \mathcal{S}$	55.7	56.7
GAIN [20]	VGG-16	DeepLab (VGG-16)	$\mathcal{I} + \mathcal{S}$	55.3	56.8
MCOF [64]	VGG-16	DeepLab (VGG-16)	$\mathcal{I} + \mathcal{S}$	56.2	57.6
DCSP [85]	VGG-16	-	$\mathcal{I} + \mathcal{S}$	58.6	59.2
DSRG [47]	VGG-16	DeepLab (VGG-16)	$\mathcal{I} + \mathcal{S}$	59.0	60.4
SeeNet [22]	VGG-16	DeepLab (VGG-16)	$\mathcal{I} + \mathcal{S}$	61.1	60.7
MDC [52]	VGG-16	DeepLab (VGG-16)	$\mathcal{I} + \mathcal{S}$	60.4	60.8
MCOF [64]	VGG-16	DeepLab (ResNet-101)	$\mathcal{I} + \mathcal{S}$	60.3	61.2
OCSP [85]	ResNet-101	-	$\mathcal{I}+\mathcal{S}$	60.8	61.9
ickleNet [49]	VGG-16	DeepLab (VGG-16)	$\mathcal{I} + \mathcal{S}$	61.2	61.9
an et al. [50]	ResNet-50	DeepLab (VGG-16)	$\mathcal{I} + \mathcal{S}$	61.3	62.1
eeNet [22]	VGG-16	DeepLab (ResNet-101)	$\mathcal{I} + \mathcal{S}$	63.1	62.8
AA+ [51]	VGG-16	DeepLab (VGG-16)	$\mathcal{I} + \mathcal{S}$	63.1	62.8
SRG [47]	VGG-16	DeepLab (ResNet-101)	$\mathcal{I} + \mathcal{S}$	61.4	63.2
an et al. [50]	ResNet-50	DeepLab (ResNet-101)	$\mathcal{I} + \mathcal{S}$	63.6	64.5
IAN [54]	VGG-16	DeepLab (ResNet-101)	$\mathcal{I} + \mathcal{S}$	64.3	65.3
ickleNet [49]	VGG-16	DeepLab (ResNet-101)	$\mathcal{I} + \mathcal{S}$	64.9	65.3
AA+ [51]	VGG-16	DeepLab (ResNet-101)	$\mathcal{I}+\mathcal{S}$	65.6	66.4
IIL-FCN [44]	VGG-16	-	I	-	25.7
M-Adapt [46]	VGG-16	-	${\mathcal I}$	38.2	39.6
EC [41]	VGG-16	DeepLab (VGG-16)	${\mathcal I}$	50.7	51.7
EFF [79]	VGG-16	FCN (VGG-16)	$\mathcal I$	-	55.6
RM [18]	WideResNet-38	DeepLab (VGG-16)	${\mathcal I}$	60.7	61.0
raslanov and Roth [95]	WideResNet-38	-	${\mathcal I}$	62.7	64.3
SDD [40]	WideResNet-38	WideResNet-38	${\mathcal I}$	64.9	65.5
RM [18]	WideResNet-38	DeepLab (ResNet-101)	\mathcal{I}	66.3	66.5
SA [16] (baseline)	WideResNet-38	DeepLab (VGG-16)	I	58.4	60.5
PSA [16] (baseline)	WideResNet-38	WideResNet-38	${\mathcal I}$	61.7	63.7
PSA [16]† (baseline)	WideResNet-38	DeepLab (Xception-65)	${\cal I}$	60.7	-
EADER (Ours)	WideResNet-38	DeepLab (ResNet-101)	\mathcal{I}	62.5	63.0
EADER (Ours)	WideResNet-38	DeepLab (Xception-65)	${\mathcal I}$	62.8	63.8