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  ABSTRACT 

Cerebral small vessel disease (SVD) is a common finding on magnetic resonance images of elderly people. White matter 

lesions (WML) are important markers for not only the small vessel disease, but also neuro-degenerative diseases including 

multiple sclerosis, Alzheimer’s disease and vascular dementia. Volumetric measurements such as the “total lesion load”, 

have been studied and related to these diseases. With respect to SVD we conjecture that small lesions are important, as 

they have been observed to grow over time and they form the majority of lesions in number. To study these small lesions 

they need to be annotated, which is a complex and time-consuming task. Existing (semi)automatic methods have been 

aimed at volumetric measurements and large lesions, and are not suitable for the detection of small lesions.  

In this research we established a supervised voxel classification CAD system, optimized and trained to exclusively 

detect small WMLs. To achieve this, several preprocessing steps were taken, which included a robust standardization of 

subject intensities to reduce inter-subject intensity variability as much as possible. A number of features that were found 

to be well identifying small lesions were calculated including multimodal intensities, tissue probabilities, several features 

for accurate location description, a number of second order derivative features as well as multi-scale annular filter for 

blobness detection. Only small lesions were used to learn the target concept via Adaboost using random forests as its basic 

classifiers. Finally the results were evaluated using Free-response receiver operating characteristic.   
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1. INTRODUCTION 

Cerebral small vessel disease (SVD) encompasses all the pathological processes that affect the small vessels of the brain.  

SVD is common in elderly people; some studies have reported its prevalence to reach up to 95 percent. On magnetic 

resonance imaging (MRI), SVD is characterized by lacunes, white matter lesions, brain microbleeds and brain subcortical 

atrophy. In a small proportion of cases SVD will eventually lead to cognitive, motor and mood impairment, dementia and 

Parkinsonism1,2,3. Studies are being conducted to investigate the common characteristics of those cases4,5. Due to lack of 

better measures, these studies have been focusing on the overall volume and segmentations of WMLs. It is assumed, 

however, that accurate detection of lesions, large or small, is a valuable asset for the study of SVD and its personalized 

prognosis. 

There are several studies in the literature focusing on (semi)automatic WML quantification, most of which are 

performing white matter segmentation for different disorders including multiple sclerosis6,7, vascular dementia8, 

leukoaraiosis9 and neuropsychiatric systemic lupus erythematosus10. Some methods follow a non-classification approach. 

As two instances of this category, Ong et al. use a histogram based method that adaptively detects intensity outliers11, and 

Wu et al. utilize a fuzzy connected algorithm to iteratively grow the seed points obtained from FLAIR image intensity 

histogram12. Other methods employ voxel classification: Anbeek et al. use KNN classifier on spatial and intensity 

features13. Kloppel et al. combine intensity, Gabor and spatial information using SVM and KNN classifiers14. Steenwijk et 

al. also make use of KNN with intensities, MNI normalized spatial information and tissue type priors15. Finally, Ithapu et 

al. train SVM and random forest classifiers on intensity and texture features in order to segment WMLs for the patients 



diagnosed with Alzheimer’s diseases16.  

Since these researches focus on the segmentation of WMLs, and are tuned and validated with volume or Dice 

measurements, smaller sized lesions have been ignored in the development of these algorithms because these smaller 

lesions do not contribute to the total volume significantly. As a consequence, the small lesions go mostly undetected by 

these (semi)automatic methods. From manual annotations of over 500 SVD patients, we have learned that over 60 percent 

of the lesions’ effective diameter is smaller or equal to 3 mm. Therefore many WML descriptors like the number of WMLs, 

locational distribution, progress stage and progress speed of the WMLs will be better assessed, if a better detection of 

smaller lesions is available. The only method that already worked on WML detection is by Riad et al. that train a general 

WML voxel classifier which uses a special WML sampling to equally affect the classifier by smaller and larger lesions17. 

Considering the fact that smaller and larger lesions are completely heterogeneous in shape and intensity, one cannot expect 

a single classifier to perfectly detect both small and large lesion concept.  

In this paper, we present a CAD system that has been trained and optimized for detection of small WMLs. This 

optimization includes selection of appropriate features and the classifier. To assess the detection performance of our 

automated system, we use a free-response receiver operating characteristic (FROC) analysis. 

2. MATERIALS AND METHODS 

2.1 Data 

The data used in this research comes from RUN DMC4, which includes three MR images of 503 patients diagnosed with 

SVD who showed mild cognitive impairment evidences. A single 1.5 Tesla scanner (Magnetom Sonata, Siemens Medical 

Solutions, Erlangen, Germany) was used to obtain the MRI scans. The protocol included a 3D T1 magentization-prepared 

rapid gradient-echo sequence (TR/TE/TI 2250/3.68/850 ms; flip angle 15◦; voxel size 1.0×1.0×1.0 mm); FLAIR pulse 

sequences (TR/TE/TI 9000/84/2200 ms; voxel size 1.0×1.2×5.0 mm, interslice gap 1 mm) and transversal T2* weighted 

gradient echo sequence (TR/TE 800/26 ms; voxel size 1.3×1.0×6.0 mm, interslice gap 1 mm). Later two experienced 

neurologists manually annotated WMLs in a slice by slice manner, as white matter signal hyperintensities in both supra 

and infratentorial regions on FLAIR scans except for gliosis surrounding infarcts. 50 out of these 503 cases were manually 

annotated by the both experts. 

2.2 Preprocessing 

There are four main steps that were taken to prepare the raw T1, T2* and FLAIR images ready for the feature calculation. 

To setup a voxel classification framework, first of all, the three modalities were aligned so that all the corresponding voxels 

of the three images were at the same position. For this, T1 and T2* images were linearly registered to the FLAIR image 

using mutual information measure with trilinear interpolation resampling as implemented in FSL-FLIRT18. All subject 

images were also registered to the ICBM15219 atlas so that we obtained a mapping from each subject space to atlas space 

for a later use. 

Then we performed brain extraction to remove the skull, eyes and all other non-brain tissue. We utilized FSL-BET20 

operating on T1 since it had the highest resolution. Furthermore due to presence of the magnetic field inhomogeneity, 

which is prone to affect lesion classification, bias field correction was performed using FSL-FAST21.  

Even after bias field correction, there might be quite considerable intensity variability between the different subjects. 

As FLAIR Intensity is the most important feature for WML identification task, normalization of the image intensities 

across patients is imperative. One of the subjects was considered as the reference and other subjects were transformed in 

a way that their intensity characteristics became similar after the transformation. To achieve this, we used a bi-variate 

Gaussian mixture modeling (GMM) method on T1 and FLAIR intensities to extract gray matter (GM), white matter (WM) 

and cerebrospinal fluid (CSF). Then we projected each Gaussian on the FLAIR axis resulting in a 1D Gaussians for the 

FLAIR image. Given a voxel, considering its signal intensity and the tissue type it belongs to, the intensity was transformed 

to a new value with a similar position in the corresponding tissue type Gaussian distribution in the reference image. Based 

on the membership probabilities of a given intensity that the GMM process provided, a weighted average of transformed 

intensities were calculated. This way the Gaussians representing different tissues of all subjects’ FLAIR images, were 

aligned with those of the reference image. The same procedure was applied to standardize the T1 images. 

2.3 Features 

As mentioned before, a voxel classification framework is established and twenty four different voxel features are calculated 

for the classifier to learn the WML concept. The group of intensity features are the most intuitive features one can consider 



for this task. Intensities of the co-registered, bias field corrected and intensity standardized T1, FLAIR and T2* images are 

used. Since WMLs are related to WM and not to the other tissue types, three features representing the probabilities that a 

voxel belongs to each tissue, were added to the features set. These probabilities are obtained from the GMM process. 

WMLs are not uniformly distributed over the whole brain space and thus voxel location information might be a very 

discriminating feature. For instance, gray matter voxels might look like WMLs in terms of intensity, but a neurology expert 

can easily distinguish between them, noting their position in the brain. Therefore, several features describing the voxels 

location were calculated: X, Y and Z of ICBM152 mapping of voxels, 2D Euclidean distances of voxels from left and right 

ventricles, 2D distance of voxels from the brain cortex as well as the 2D distance of voxels from the mid-sagittal brain 

surface were calculated. Furthermore, considering the relatively high number of available subjects, a pretty accurate prior 

probability of WMLs in each location was obtained by calculating the proportion of patients with an annotated WMLs in 

the corresponding atlas position. This proportion was used as another location-based feature. 

A number of second order derivative features describing blob-like structures, were considered useful for small WML 

detection and were calculated and added to the features set: These features include Multi-scale Laplacian of Gaussian, 

determinant of Hessian matrix, vesselness and gauge derivative in the direction of the normal vector22. Furthermore 

because small WMLs mostly appear as isolated hyperintense blob-like structures, multi-scale gray-scale annular filter, as 

another blobness detector was used23. Table 1 summarizes the mentioned features. 

Table 1.  A summary of the features used to train the classifier for detection of small WMLs. 

Group Feature 

Intensities FLAIR intensity 

T1 intensity 

T2* intensity 

Tissue Probabilities WM probability 

GM probability 

CSF probability 

Location information 

   

X, Y and Z in MNI space 

2D Euclidean distance from left and right ventricle 

2D Euclidean distance from brain cortex 

2D Euclidean distance from mid-sagittal brain surface  

WMLs prior probability 

Second order derivatives Multi-scale Laplacian of Gaussian (𝑡=1,2,4 mm) 

 Multi-scale determinant of Hessian (𝑡=1,2,4 mm) 

 Vesselness (σ=1 mm) 

 Gauge derivative in the direction of the normal vector 

Annular filter Multi-scale gray-scale annular filter (𝑡=1,2,4) 

2.4 Sampling and Training 

A random subset of 100 images was selected for training. Considering the fact that there are much more negative samples 

compared to the positives, all voxels in WMLs having effective diameter smaller or equal to 3 mm were selected as positive 

samples. On the other hand, all trivial negative samples which had FLAIR intensity less than a specified threshold, were 

omitted, and 2% of the remaining voxels were taken randomly as the negative samples. 

A random forest with 20 sub-trees was selected as the base classifier. Then three iterations of Adaboost were run over 

the random forest. In the Adaboost learning algorithm samples that were misclassified in previous iterations get higher 

chance to be selected for the next iterations. This causes the whole ensemble to be better capable to handle harder samples. 

The resulting classifier that concentrates more on harder samples, is a better fit for small WML classification that is a tough 



task due to the partial volume effect, presence of dirty white matter as well as small noises that resemble small WMLs. 

2.5 Validation 

To assess the quality of the proposed CAD system, we make use of FROC analysis in order to emphasize more in detection 

of smaller lesions. The detailed procedure is as follows: Firstly local maxima of the lesions likelihood map resulted from 

the voxel classification are calculated in 3×3 neighborhoods. Then at different decision boundary thresholds on local 

maxima likelihoods, each local maxima that is found outside of the manual WML annotations is considered as a false 

positive, and every annotation segment hit by at least one local maxima, a true positive. 

3.  RESULTS 

The described validation process was performed on 32 test subjects. Figure 1 (a) compares the FROC curves of a single 

random forest, Gentleboost using regression stumps and Adaboost using random forest. As the figure suggests, Adaboost 

using random forest as its base classifier, dominates the other two. Figure 1 (b) shows the performance of Adaboost using 

random forest with incrementally added sets of features. 

  

(a) (b) 

Figure 1. FROC evaluations of the CAD system: (a) FROC curve for three different classifiers: 3 iterations of Adaboost using 

random forest with 20 sub-trees, a single random forest with 20 sub-trees and Gentleboost with 50 regression stump classifiers  

(b) FROC curves for models created with different feature sets: (I=Intensities, T=Tissue Probabilities, L=Locations, S=Second order 

derivatives, A=multi-scale Annular filter) 

For a visual assessment of the quality of the presented CAD system, figure 2 demonstrates the detection results and 

compares it to the human expert annotations for small WMLs. 

4. CONCLUSIONS AND DISCUSSIONS 

In this paper a method for the automatic detection of small WMLs was presented. Current research has focused solely on 

volumetric measurements or lesion segmentations, and have largely ignored these small lesions. Our method makes uses 

of features relevant to small WMLs, some of which are novel to be used in this domain. Contribution of each feature 

groups has been evaluated. Based on the results, it is notable that there is significant amount of information in standardized 

image intensities and our accurate location information feature group. Also interestingly, the not very well-known 

grayscale annular filter significantly contributes in detection performance, even though there were already Laplacian of 

Gaussian and determinant of Hessian as two other multi-scale blobness detectors in the features set. Also the Adaboost 

classifier has shown increased performance over a single random forest classifier, due to its ability to concentrate on harder 

samples. 

Finally we have to note once more that small WML detection is a tough task with a large inter- and intra-reader 

variability, mostly due to the presence of dirty WM, which is the WM in transition to WML, image noise due to imaging 

deficiencies, patient movement and thick image slices that cause partial volume effect. The classifier reached 0.8 true 



positive rate with less than 140 false positives per scan on average. Further investigation on false positives by aligning 

them to follow up scans from 5 years later, which enjoys thinner slices and higher contrast, showed that a significant 

proportion of false positives were either an obvious small WML present in the original scans that were missed by the expert 

annotators or high potential dirty white matters that were already transited to an obvious lesion in the follow-up scans. 

 

           (a) (b) (c) (d) 

Figure 2. A visual demonstration of the performance of the proposed CAD system. (a) sample FLAIR slices (b) small WML 

likelihood maps generated by the CAD system (c) overlayed heatmaps for the thresholded WML likelihoods (τ = 0.7) (d) expert 

annotations for the small lesions in red and larger lesions in green. 
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