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ABSTRACT

Prostate cancer (PCa) remains a leading cause of cancer mortality among American men. Multi-parametric
magnetic resonance imaging (mpMRI) is widely used to assist with detection of PCa and characterization of its
aggressiveness. Computer-aided diagnosis (CADx) of PCa in MRI can be used as clinical decision support system
to aid radiologists in interpretation and reporting of mpMRI. We report on the development of a convolution
neural network (CNN) model to support CADx in PCa based on the appearance of prostate tissue in mpMRI,
conducted as part of the SPIE-AAPM-NCI PROSTATEx challenge. The performance of different combinations
of mpMRI inputs to CNN was assessed and the best result was achieved using DWI and DCE-MRI modalities
together with the zonal information of the finding. On the test set, the model achieved an area under the receiver
operating characteristic curve of 0.80.

1. INTRODUCTION

Currently, about one in seven men will be diagnosed with prostate cancer during his lifetime. Estimations show
that the number of new cases and deaths from Prostate Cancer (PCa) will be 161, 360 and 26, 730, respectively,
in 2017.1 Accurate diagnosis and staging of PCa are critical for the selection of the most suitable treatment, and
ultimately for reducing PCa morbidity and mortality. Recent advances in prostate multi-parametric magnetic
resonance imaging (mpMRI) have improved cancer diagnosis and staging.2 At present, mpMRI assessment relies
on human experts, and requires specialized training and experience. Recently, deep convolutional neural networks
(CNN) have been widely used in medical image processing and analysis and have outperformed the conventional
computer vision methods in various medical image analysis tasks3 including detection of microcalcifications in
digital breast tomosynthesis,4 masses in mammography,5 embolism in CT pulmunary angiography, and lacunes
brain MRI.6 In this paper we present a 3D CNN method developed for the SPIE-AAPM-NCI PROSTATEx
challenge, tailored for the task of classification of clinically significant prostate cancer findings in mpMRI.

2. METHODS

2.1 Data

The challenge included the training dataset consisting of 204 patients with 330 suspicious lesion findings, and the
test dataset with 140 patients and 208 findings. For each of the findings, assignment of the prostate anatomic
region was available. The prostate gland can be sub-divided into four anatomic regions: the peripheral zone
(PZ), with 70–80% of the glandular tissue and accounting for about 70% of PCa; the transition zone (TZ), 5%
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Figure 1: Distribution of training and test datasets of the PROSTATEx challenge. (a) Training samples: the
distribution of lesion findings shows that the training dataset is not balanced in terms of both zonal distribution
and the clinical significance of the finding. (b) Test samples are not balanced in terms of zones.

of the glandular tissue, and ≈ 25% of PCa; the central zone, 20% of the glandular tissue and around 5% of PCa;
and the non-glandular anterior fibromuscular stroma (AS).7 The training and test samples in the PROSTATEx
challenge were from PZ, TZ, AS and seminal vesicles (SV) as illustrated in Figure 1. After minor data cleaning,
we selected 201 subjects with 321 findings for training and validation purposes. In order to augment and balance
the training dataset, we used flipping and translation of the original data. As a result of data augmentation,
we generated 5-fold cross-validation datasets with 10,000 training and 2,000 validation samples for each fold.
The training-validation splitting in each fold was done such that the distribution of the findings across prostate
regions was preserved. Image intensities were normalized to be within the range of [0,1]. 3D patches of size
40 × 40 × 40 mm for T2, 32 × 32 × 12 for DWI and DCE-MRI images, centered at finding locations served as
inputs to the CNN.

2.2 Network Architecture

Our CNN architecture included three input streams: ADC maps and maximum b-value from DWI, and Ktrans

from DCE-MRI. Similar to the work of Ghafoorian et al.,8 we added explicit zone information to the first dense
layer. The DCE-MRI and DWI streams with input sizes of (32 × 32 × 12) had 9 convolutional layers combining
of (3 × 3 × 1) and (3 × 3 × 3) filter sizes. Max-pooling layers of size 2 × 2 × 1 were applied in selected middle
layers. At the end of each stream, the output of the last convolutional layer was connected to a dense layer. The
neurons of this layer were concatenated with the zonal information of the finding and applied to another set of
three fully connected layers. Leaky rectified linear unit9 function was used as the non-linearity element.

2.3 Training

For training the network, we used the stochastic gradient descent algorithm with the Adam update rule,10 a
mini-batch size of 64, and a binary cross-entropy loss function. We initialized the CNN weights randomly from
a Gaussian distribution using the He method.11 We also batch-normalized12 the intermediate responses of all
layers to accelerate the convergence. To prevent overfitting, in addition to the batch-normalization, we used
drop-out with 0.25 probability as well as L2 regularization with λ2 = 0.005 penalty on neuron weights. We
used an early stopping policy by monitoring validation performance and picked the best model with the highest
accuracy on the validation set. Cross-validation was used to find the best combination of input channels and
number of filters for convolutional layers.

3. RESULTS

Our training-validation results indicate that the combination of ADC, maximum B-Value and Ktrans modalities
in combination with zonal information of the lesion leads to the best performance characterized by the area
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Figure 2: Architecture of the proposed 3D CNN. The network uses combination of ADC map, maximum B-Value
(BVAL) from DWI and Ktrans from DCE-MRI with zone information.
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Figure 3: Comparison of classifiers trained with architecture in Figure 2 on different folds of cross-validation.

under curve (Az) of the receiver operating characteristic (ROC) curve. Figure 3 shows the results of training on
different folds of our cross-validation. For test data prediction we combined the prediction of the best 4 out of
the 5 models by averaging the outputs of the models. Figure 4 shows an example of a true positive finding in
the validation set. The trained model is deployed in the open-source deployment toolkit, the DeepInfer.13

Network was tested using 206 findings from 140 patients. The performance of our model on PROSTATEx
challenge data set was reported by organizers as (Az = 0.80). This is in the same range as our validation results,
indicating that the proposed model generalizes well on the new data.

4. DISCUSSION AND CONCLUSIONS

In this study we observed that 3D CNNs can be efficiently applied for detecting clinically significant prostate
cancer. Our result is comparable with the Az values achieved by the experienced human reader: 0.79 and 0.83
for PI-RADS v1 and PI-RADS v2, respectively.14
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Figure 4: An example of a PZ true positive in validation set. Only (d-f) modalities with zone information
(zone=PZ) were used by the network to predict the clinical significance of the finding.
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