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Abstract

Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for
analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis
and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of
deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise
overviews of studies per application area. Open challenges and directions for future research are discussed.

Keywords: deep learning, convolutional neural networks, medical imaging, survey

1. Introduction

As soon as it was possible to scan and load medi-
cal images into a computer, researchers have built sys-
tems for automated analysis. Initially, from the 1970s
to the 1990s, medical image analysis was done with se-
quential application of low-level pixel processing (edge
and line detector filters, region growing) and mathe-
matical modeling (fitting lines, circles and ellipses) to
construct compound rule-based systems that solved par-
ticular tasks. There is an analogy with expert systems
with many if-then-else statements that were popular in
artificial intelligence in the same period. These ex-
pert systems have been described as GOFAI (good old-
fashioned artificial intelligence) and were often brittle;
similar to rule-based image processing systems.

At the end of the 1990s, supervised techniques, where
training data is used to develop a system, were becom-
ing increasingly popular in medical image analysis. Ex-
amples include active shape models (for segmentation),
atlas methods (where the atlases that are fit to new data
form the training data), and the concept of feature ex-
traction and use of statistical classifiers (for computer-
aided detection and diagnosis). This pattern recogni-
tion or machine learning approach is still very popular
and forms the basis of many successful commercially
available medical image analysis systems. Thus, we
have seen a shift from systems that are completely de-

signed by humans to systems that are trained by com-
puters using example data from which feature vectors
are extracted. Computer algorithms determine the opti-
mal decision boundary in the high-dimensional feature
space. A crucial step in the design of such systems is
the extraction of discriminant features from the images.
This process is still done by human researchers and, as
such, one speaks of systems with handcrafted features.

A logical next step is to let computers learn the fea-
tures that optimally represent the data for the problem at
hand. This concept lies at the basis of many deep learn-
ing algorithms: models (networks) composed of many
layers that transform input data (e.g. images) to outputs
(e.g. disease present/absent) while learning increasingly
higher level features. The most successful type of mod-
els for image analysis to date are convolutional neu-
ral networks (CNNs). CNNs contain many layers that
transform their input with convolution filters of a small
extent. Work on CNNs has been done since the late sev-
enties (Fukushima (1980)) and they were already ap-
plied to medical image analysis in 1995 by Lo et al.
(1995). They saw their first successful real-world appli-
cation in LeNet (Lecun et al. (1998)) for hand-written
digit recognition. Despite these initial successes, the
use of CNNs did not gather momentum until various
new techniques were developed for efficiently training
deep networks, and advances were made in core com-
puting systems. The watershed was the contribution of
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Krizhevsky et al. (2012) to the ImageNet challenge in
December 2012. The proposed CNN, called AlexNet,
won that competition by a large margin. In subsequent
years, large progress has been made using related but
deeper architectures (Russakovsky et al. (2014)). In
computer vision, deep convolutional networks have now
become the technique of choice.

The medical image analysis community has taken no-
tice of these pivotal developments. However, the transi-
tion from systems that use handcrafted features to sys-
tems that learn features from the data has been grad-
ual. Before the breakthrough of AlexNet, many dif-
ferent techniques to learn features were popular. Ben-
gio et al. (2013) provide a thorough review of these
techniques. They include principal component analysis,
clustering of image patches, dictionary approaches, and
many more. Bengio et al. (2013) introduce CNNs that
are trained end-to-end only at the end of their review in
a section entitled Global training of deep models. In this
survey, we focus particularly on such deep models, and
do not include the more traditional feature learning ap-
proaches that have been applied to medical images. For
a broader review on the application of deep learning in
health informatics we refer to Ravi et al. (2017), where
medical image analysis is briefly touched upon.

In this survey over 300 papers are reviewed, most of
them recent, on a wide variety of applications of deep
learning in medical image analysis. The appendix de-
scribes how the papers included in this survey were se-
lected1. With this survey we aim to:

• show that deep learning techniques have permeated
the entire field of medical image analysis;

• identify the challenges for successful application
of deep learning to medical imaging tasks;

• highlight specific contributions which solve or cir-
cumvent these challenges.

Applications of deep learning to medical image analysis
first started to appear at workshops and conferences, and
then in journals. The number of papers grew rapidly
in 2015 and 2016. This is illustrated in Figure 1. The
topic is now dominant at major conferences and a first
special issue appeared of IEEE Transaction on Medical
Imaging in May 2016 (Greenspan et al. (2016)).

The structure of this paper is as follows: In Section
2 we introduce the main deep learning techniques that
have been used for medical image analysis. Section 3
describes the contributions of deep learning to various

1We welcome feedback on work missing from this overview.

generic tasks in medical image analysis: classification,
detection, segmentation, registration, retrieval, image
generation and enhancement. Section 4 discusses ob-
tained results and open challenges per application area.
We end with a general discussion and an outlook for fu-
ture research.

2. Overview of deep learning techniques

In this section, we introduce the deep learning con-
cepts that are important for and have been applied to
medical image analysis. Readers who are interested in
more background can consult one of several reviews and
tutorials (Schmidhuber (2015); Gu et al. (2015); LeCun
et al. (2015); Lecun et al. (1998)). A schematic repre-
sentation of some of the most commonly used networks
can be found in Figure 2.

2.1. Neural networks
Most deep architectures are based on neural networks

and can be considered as a generalization of a linear or
logistic regression. The activation a of each neuron in
such a network represents a linear combination of some
inputs x and a set of learned parameters, w and b, fol-
lowed by an element-wise non-linearity σ(·):

a = σ(wT x + b) (1)

A neural network consists of several layers L of
stacked neurons through which a signal is propa-
gated, σ(wT

Lσ(wT
L−1 . . .) + bL). When multiple, mono-

directional (i.e. feed-forward) layers are stacked in such
a way, the model is referred to as a multi-layered percep-
tron (MLP), where the intermediate layers are typically
known as hidden layers as they are not directly observed
(in contrast to the in- and output layers). When a net-
work has many layers it is often called ’deep’ or a deep
neural network (DNN).

For a long time, DNNs were considered hard to train
efficiently and only gained popularity in 2006 (Hinton
and Salakhutdinov (2006); Hinton et al. (2006); Bengio
et al. (2007)) when it was shown that greedily train-
ing DNNs layer-by-layer in an unsupervised manner
(pre-training), followed by supervised fine-tuning of the
stacked network, could result in excellent pattern recog-
nition tools. Two popular architectures trained in such a
way are stacked auto-encoders (SAEs) and deep belief
networks (DBNs). An alternative strategy is to train an
entire deep network end-to-end in a supervised fashion.
Two of such architectures are currently popular: convo-
lutional neural networks (CNNs) and recurrent neural
networks (RNNs). At the time of writing, CNNs are far
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Figure 1: Breakdown of the papers included in this survey in year of publication, task addressed (Section 3), imaging modality, and application
area (Section 4).

more ubiquitous in (medical) image analysis, although
RNNs are gaining popularity.

2.2. Types of neural networks

2.2.1. Auto-encoders (AEs) and Stacked Auto-encoders
(SAEs)

AEs are simple networks that are trained to recon-
struct the input x on the output layer x′ through one
hidden layer h. They are governed by weight matrices
Wx,h and Wh,x′ and biases bx,h and bh,x′ . If the hidden
layer had the same size as the input and no further non-
linearities were added, the model would simply learn
the identity function. The crucial feature however, is
the use of a non-linear activation function to compute
the latent representation

h = σ(Wx,hx + bx,h), (2)

and typically take an |h| that is smaller than |x|. This
way, the data is projected onto a lower dimensional sub-
space representing a dominant latent structure in the in-
put. Regularization or sparsity constraints can be em-
ployed to better discover relevant structure. The weight
matrix Wh,x is often taken to be WT

x,h. The denoising
auto-encoder (Vincent et al. (2010)) is another proposed
solution to prevent the model from learning a trivial so-
lution. In this setting, the model is trained to reconstruct

the input from a noise corrupted version (typically salt-
and-pepper-noise). SAEs (or deep AEs) are formed by
placing auto-encoder layers on top of each other. Typ-
ically, each auto-encoder layer was trained individually
(’greedily’) after which the full network was fine-tuned
using supervised training to predict some label given an
input.

2.2.2. Restricted Boltzmann Machines (RBMs) and
Deep Belief Networks (DBNs)

RBMs (Hinton (2010)) are a type of Markov Ran-
dom Field (MRF), constituting an input layer or visi-
ble layer x = (x1, x2, . . . , xN) and a hidden layer h =

(h1, h2, . . . , hM) that carries the latent feature represen-
tation. The connections between the nodes are bi-
directional, given an input vector x one can obtain the
latent feature representation h, but also vice versa. As
such, the RBM is a generative model, meaning we can
sample from it and generate new data points coming
from the distribution on which it is trained. In analogy
to physical systems, an energy function is defined for a
particular state (x,h) of input and hidden units:

E(x,h) = hT Wx − cT x − bT h (3)

with c and b bias terms. The probability of the ’state’ of
the system is defined by simply tossing the energy into

3



an exponential and normalizing for each possible state:

p(x,h) =
1
Z

exp{−E(x,h)} (4)

Computing the partition function Z is generally in-
tractable. However, conditional inference in the form of
computing h conditioned on v or vice versa is tractable
and results in a simple formula:

P(h j|x) =
1

1 + exp{−b j −W jx}
(5)

Since the network is symmetric, a similar expression
holds for P(xi|h).

DBNs (Hinton et al. (2006); Bengio et al. (2007)) are
essentially SAEs where the AE layers are replaced by
RBMs. Training of the individual layers is, again, done
in an unsupervised manner. Final fine-tuning is per-
formed by adding a linear classifier to the top layer of
the DBN and performing a supervised optimization.

2.2.3. Convolutional Neural Networks (CNNs)
The strength of CNNs lies in their weight sharing,

exploiting the intuition that similar structures occur in
different locations in an image. When seeing x as a vec-
torized image, weights can be shared in such a way that
it results in a convolution operation, the main workhorse
of the CNN. This drastically reduces the amount of
parameters (i.e. the number of weights no longer de-
pends on the size of the input image) that need to be
learned and renders the network equivariant with re-
spect to translations of the input.

At each layer, the input image is convolved with a set
of K kernelsW = {W1,W2, . . . ,WK} and subsequently
biases B = {b1, . . . , bK} are added, each generating a
new feature map Xk. These features are subjected to
an element-wise non-linear transform σ(·) and the same
process is repeated for every convolutional layer l:

Xl
k = σ

(
Wl−1

k ⊗ Xl−1 + bl−1
k
)

(6)

Convolutional layers are typically alternated with pool-
ing layers where pixel values of neighborhoods are
aggregated using some permutation invariant function,
typically the max or mean operations, which induce a
certain amount of translation invariance.

At the end of the convolutional stream of the network,
fully-connected layers (i.e. regular neural network lay-
ers) are usually added to act as classification layers,
where weights are no longer shared. In contrast to SAEs
and DBNs, CNNs are typically trained end-to-end (as
opposed to layer-by-layer) in a completely supervised

manner. The significant reduction in the number of
weights and the translational invariance of the learned
features (i.e. the convolution kernels) contributes to the
ability of CNNs to be trained end-to-end.

2.2.4. Recurrent Neural Networks (RNNs)
RNNs exploit structure in the data, similar to the

weight sharing in CNNs but using sequential structure
instead. Rather than learning the posterior over Y given
a input vector x, the model learns it given a sequence
x1, x2, . . . , xT and are therefore more general.

The plain RNN maintains a latent or hidden state h at
time t that is some non-linear mapping from its input xt

and the previous state ht−1:

ht = σ(Wxt + Rht−1 + b) (7)

where weight matrices W and R are shared over time.
For classification, some fully connected layers are typi-
cally added followed by a softmax to map the sequence
to a posterior over the classes.

P(Y = y|x1, x2, . . . , xT ; Θ) = softmax(hT ; Wout,bout)
(8)

Since the gradient needs to be backpropagated from
the output through time, RNNs are inherently deep (in
time) and consequently suffer from the problems of fad-
ing or exploding gradients during learning (Bengio et al.
(1994)). To this end, several specialized memory units
have been developed. The earliest one is the Long Short
Term Memory (LSTM) cell (Hochreiter and Schmidhu-
ber (1997)). LSTM units comprise gating functions and
can be seen as a differentiable version of a computer
memory chip. Each gate is governed by a weight matrix
from the input and a weight matrix from the previous
hidden state. At the heart of the unit lies a memory cell
c that combines the activation of the other gates and re-
lays it to the output of the unit and the next state of its
memory. The model effectively learns when to read and
write from the memory.

2.3. Deep CNN Architectures

Given the prevalence of convolutional neural net-
works in medical imaging, we elaborate on the most
common architectures and architectural differences be-
tween widely used models.

2.3.1. General classification architectures
The paper by Krizhevsky et al. (2012) introduced

the so-called AlexNet, which shattered previous records
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on the ImageNet Large Scale Visual Recognition Chal-
lenge (ILSVRC) in 2012, and is still one of the most
well-known CNN architectures for classification. It is
comprised of feature maps of {96, 256, 384, 384, 256}
kernels with pooling on the 1st, 2nd, and 5th layers;
kernel sizes were {11, 5, 3, 3, 3} respectively. Two fully
connected layers of 4096 units were added to the end
of the network, which resulted in a total of 60 million
parameters.

In the last three years, there seems to be a preference
towards deeper models with more complex building
blocks. Deeper networks have been shown to be able
to represent certain function classes exponentially more
efficiently (Srivastava et al. (2014); Bengio (2012)) and
generally have a lower memory footprint during infer-
ence, enabling their deployment on mobile computing
devices such as smartphones. Simonyan and Zisserman
(2014) were the first to explore much deeper networks,
and employed fixed 3 × 3 sized kernels, the most pop-
ular being VGG-19, a 19 layer network which won the
ImageNet challenge of 2014. Szegedy et al. (2014) in-
troduced a 22-layer network coined GoogLeNet. Their
model makes use of so-called inception blocks (Lin
et al. (2013)). Inception blocks can be interpreted as a
network-in-a-network, where the input is branched into
several different convolutional sub-networks which are
concatenated at the end of the block. Inception blocks
also introduced the application of 1x1 convolutions to
reduce the dimensionality of the feature maps.

The ResNet architecture (He et al. (2015)) is currently
the best performing deep architecture, being the winner
of the ImageNet challenge in 2015. A so-called ResNet-
block is defined as:

y = x + F(x,WR). (9)

As one can distill from this equation, the network only
needs to learn the residual F(x,WR). This way, the
model is preconditioned towards learning ‘simple’ par-
simonious representations in each layer that are close
to the identity function. The fact that the ResNet sub-
mission of 2015 only had 15% of the floating point op-
erations (FLOPS) compared to VGG-19, the winner of
the previous year (3.6 billion vs 19.6 billion), proves
this. Function F(x,WR) is known as a residual block,
for which several variants have been proposed (He et al.
(2015, 2016)). ResNet architectures have also been
combined with inception blocks (Szegedy et al. (2016)).

2.3.2. Multi-stream architectures
The default CNN architecture can accommodate mul-

tiple sources of information or representations of the in-
put in the form of channels presented to the input layer.

In principle, however, different channels can be merged
at any point in the pipeline. Under the intuition that
different tasks require different ways of fusion, multi-
stream architectures are being explored. These mod-
els, sometimes referred to as dual pathway architectures
(Kamnitsas et al. (2017)), have two main applications at
the time of writing: (1) multi-scale image analysis and
(2) 2.5D classification; both relevant for medical image
processing tasks.

Image analysis on multiple scales has been done for
several decades and is a well studied concept. For ob-
ject detection, context is often an important cue. Even
though the most straightforward way to increase context
is to feed larger patches to the network, this can sig-
nificantly increase the amount of parameters and mem-
ory requirements of a network. Furthermore, it effec-
tively decreases the signal-to-noise ratio and therefore
makes learning more difficult. Consequently, architec-
tures where context is added in a down-scaled represen-
tation in addition to high resolution local information,
have been investigated. To the best of our knowledge,
the multi-stream multi-scale architecture was first ex-
plored by Farabet et al. (2013), who used it for multi-
scale segmentation. Several medical applications have
also successfully used this concept (Song et al. (2015);
Moeskops et al. (2016a); Kamnitsas et al. (2017); Yang
et al. (2016c)).

An additional challenge in the medical domain is
novel input formats such as 3D data. In early appli-
cations of CNNs to three dimensional images, full 3D
convolutions were circumvented by dividing the Vol-
ume of Interest (VOI) into slices which are fed as differ-
ent streams to a network. Prasoon et al. (2013) were the
first to use this strategy for knee cartilage segmentation.
Another strategy is to feed the network multiple angled
patches from the 3D-space in a multi-stream fashion,
which has been applied by various authors in the con-
text of medical imaging (Roth et al. (2016b); Setio et al.
(2016)).

2.3.3. Segmentation Architectures
Segmentation is a common task in medical image

analysis. Although CNNs in their basic form are clas-
sification architectures, they could straightforwardly be
applied to every single pixel or voxel in an image, using
a patch or subimage centered on that pixel or voxel, and
predicting if the pixel or voxel belongs to the object of
interest.

A naive ’sliding window’-approach has the drawback
that input patches from neighboring pixels have huge
overlap and convolutions are computed many times for
the same pixels. Fortunately, the convolution and dot

5



product are both linear operators and they can be rep-
resented interchangeably, which allows the application
of networks to images larger than the ones they were
trained on by rewriting the fully connected layers as
convolutions. The resultant ’fully convolutional net-
work’ (fCNN) can then be applied as a single set of
stacked convolutions to an entire image in an efficient
fashion. However, due to the use of ’valid’ convolutions
or pooling layers, this may result in output with a far
lower resolution than the input. Several solutions have
been proposed to circumvent this resolution degrada-
tion. The most straightforward one is called ’shift-and-
stitch’ (Long et al. (2015)), where the fCNN is applied
exactly the same amount of times as the downsampling
factor in each direction with a shift of one pixel each
time. By stitching the result together, one obtains a full
resolution version of the final output, minus the pixels
lost due to the ’valid’ convolutions.

Ronneberger et al. (2015) took the idea of the fCNN
one step further and proposed an architecture (so-called
U-net architecture), comprising a ’regular’ CNN fol-
lowed by an upsampling part where ’up’-convolutions
are used to increase the image size, coined contractive
and expansive paths. A similar approach was used by
Çiçek et al. (2016) for 3D data. Milletari et al. (2016b)
proposed an extension to the U-Net layout that incorpo-
rates ResNet-like residual blocks and a Dice loss layer
that directly minimizes the commonly used segmenta-
tion error measure.

2.4. Hardware and Software

One of the main contributors to deep learning taking
flight in recent years has been the cheap and wide avail-
ability of GPU and the corresponding GPU-computing
libraries (CUDA, OpenCL). GPUs are highly parallel
computing engines, which have an order of magnitude
more execution threads than central processing units
(CPUs). With current hardware, deep learning on GPUs
is typically 10 to 30 times faster than on CPUs.

Next to the hardware developments, the other driving
force behind the popularity of deep learning methods is
the wide availability of open source packages. These
libraries provide efficient GPU implementations of im-
portant operations in neural networks, such as convo-
lutions; allowing the user to implement ideas at a high
level rather than worrying about implementing a convo-
lutional operator in the most efficient way. At the time
of writing, the most popular packages were (in alpha-
betical order):

• Caffe (Jia et al. (2014)). Provides C++ and Python
interfaces, developed by graduate students at UC

Berkeley.

• Tensorflow (Abadi et al. (2016)). Provides C++

and Python and interfaces, developed by Google
and is used by Google research.

• Theano (Bastien et al. (2012)). Provides a Python
interface, developed by MILA lab in Montreal.

• Torch (Collobert et al. (2011)). Provides a Lua
interface and is used by, among others, Facebook
AI research.

There are third-party packages written on top of one or
more of these frameworks, such as Lasagne (https://
github.com/Lasagne/Lasagne) or Keras (https:
//keras.io/). It goes beyond the scope of this paper
to discuss all these packages in detail.

3. Deep learning in Medical Imaging

3.1. Classification
3.1.1. Image/exam classification

Image or exam classification was one of the first ar-
eas in which deep learning made a major contribution
to medical image analysis. In exam classification one
typically has one or multiple images (an exam) as in-
put with a single diagnostic variable as output (e.g.,
disease present or not). In such a setting, every diag-
nostic exam is a sample and dataset sizes are typically
small compared to those in computer vision (e.g., hun-
dreds/thousands vs. millions of samples). The popular-
ity of transfer learning for such applications is therefore
not surprising.

Transfer learning is essentially the use of pre-trained
networks (typically on natural images) to try to work
around the (perceived) requirement of large data sets
for deep network training. Two transfer learning strate-
gies were identified: (1) using a pre-trained network as
a feature extractor and (2) fine-tuning a pre-trained net-
work on medical data. The former strategy has the extra
benefit of not requiring one to train a deep network at
all, allowing the extracted features to be easily plugged
in to existing image analysis pipelines. Both strategies
are popular and have been widely applied. However,
few authors perform a thorough investigation in which
strategy gives the best result. The two papers that do,
Antony et al. (2016) and Kim et al. (2016a), offer con-
flicting results. In the case of Antony et al. (2016), fine-
tuning clearly outperformed feature extraction, achiev-
ing 57.6% accuracy in multi-class grade assessment of
knee osteoarthritis versus 53.4%. Kim et al. (2016a),
however, showed that using CNN as a feature extractor
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.

outperformed fine-tuning in cytopathology image clas-
sification accuracy (70.5% versus 69.1%). If any guid-
ance can be given to which strategy might be most suc-
cessful, we would refer the reader to two recent papers,
published in high-ranking journals, which fine-tuned a
pre-trained version of Google’s Inception v3 architec-
ture on medical data and achieved (near) human ex-
pert performance (Gulshan et al. (2016); Esteva et al.
(2017)). As far as the authors are aware, such results
have not yet been achieved by simply using pre-trained
networks as feature extractors.

With respect to the type of deep networks that are
commonly used in exam classification, a timeline sim-
ilar to computer vision is apparent. The medical
imaging community initially focused on unsupervised

pre-training and network architectures like SAEs and
RBMs. The first papers applying these techniques for
exam classification appeared in 2013 and focused on
neuroimaging. Brosch and Tam (2013), Plis et al.
(2014), Suk and Shen (2013), and Suk et al. (2014)
applied DBNs and SAEs to classify patients as hav-
ing Alzheimer’s disease based on brain Magnetic Reso-
nance Imaging (MRI). Recently, a clear shift towards
CNNs can be observed. Out of the 47 papers pub-
lished on exam classification in 2015, 2016, and 2017,
36 are using CNNs, 5 are based on AEs and 6 on RBMs.
The application areas of these methods are very diverse,
ranging from brain MRI to retinal imaging and digital
pathology to lung computed tomography (CT).

In the more recent papers using CNNs authors also
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often train their own network architectures from scratch
instead of using pre-trained networks. Menegola et al.
(2016) performed some experiments comparing training
from scratch to fine-tuning of pre-trained networks and
showed that fine-tuning worked better given a small data
set of around a 1000 images of skin lesions. However,
these experiments are too small scale to be able to draw
any general conclusions from.

Three papers used an architecture leveraging the
unique attributes of medical data: two use 3D convo-
lutions (Payan and Montana (2015); Hosseini-Asl et al.
(2016)) instead of 2D to classify patients as having
Alzheimer; Kawahara et al. (2016b) applied a CNN-
like architecture to a brain connectivity graph derived
from MRI diffusion-tensor imaging (DTI). In order to
do this, they developed several new layers which formed
the basis of their network, so-called edge-to-edge, edge-
to-node, and node-to-graph layers. They used their net-
work to predict brain development and showed that they
outperformed existing methods in assessing cognitive
and motor scores.

Summarizing, in exam classification CNNs are the
current standard techniques. Especially CNNs pre-
trained on natural images have shown surprisingly
strong results, challenging the accuracy of human ex-
perts in some tasks. Last, authors have shown that
CNNs can be adapted to leverage intrinsic structure of
medical images.

3.1.2. Object or lesion classification
Object classification usually focuses on the classifi-

cation of a small (previously identified) part of the med-
ical image into two or more classes (e.g. nodule classi-
fication in chest CT). For many of these tasks both lo-
cal information on lesion appearance and global contex-
tual information on lesion location are required for ac-
curate classification. This combination is typically not
possible in generic deep learning architectures. Several
authors have used multi-stream architectures to resolve
this in a multi-scale fashion (Section 2.3.2). Shen et al.
(2015b) used three CNNs, each of which takes a nodule
patch at a different scale as input. The resulting feature
outputs of the three CNNs are then concatenated to form
the final feature vector. A somewhat similar approach
was followed by Kawahara and Hamarneh (2016) who
used a multi-stream CNN to classify skin lesions, where
each stream works on a different resolution of the im-
age. Gao et al. (2015) proposed to use a combination of
CNNs and RNNs for grading nuclear cataracts in slit-
lamp images, where CNN filters were pre-trained. This
combination allows the processing of all contextual in-
formation regardless of image size.

Incorporating 3D information is also often a neces-
sity for good performance in object classification tasks
in medical imaging. As images in computer vision tend
to be 2D natural images, networks developed in those
scenarios do not directly leverage 3D information. Au-
thors have used different approaches to integrate 3D in
an effective manner with custom architectures. Setio
et al. (2016) used a multi-stream CNN to classify points
of interest in chest CT as a nodule or non-nodule. Up to
nine differently oriented patches extracted from the can-
didate were used in separate streams and merged in the
fully-connected layers to obtain the final classification
output. In contrast, Nie et al. (2016c) exploited the 3D
nature of MRI by training a 3D CNN to assess survival
in patients suffering from high-grade gliomas.

Almost all recent papers prefer the use of end-to-end
trained CNNs. In some cases other architectures and ap-
proaches are used, such as RBMs (Zhang et al. (2016c)
and van Tulder and de Bruijne (2016)), SAEs (Cheng
et al. (2016a)) and convolutional sparse auto-encoders
(CSAE) (Kallenberg et al. (2016)). The major differ-
ence between CSAE and a classic CNN is the usage of
unsupervised pre-training with sparse auto-encoders.

An interesting approach, especially in cases where
object annotation to generate training data is expensive,
is the integration of multiple instance learning (MIL)
and deep learning. Xu et al. (2014) investigated the use
of a MIL-framework with both supervised and unsu-
pervised feature learning approaches as well as hand-
crafted features. The results demonstrated that the per-
formance of the MIL-framework was superior to hand-
crafted features, which in turn closely approaches the
performance of a fully supervised method. We expect
such approaches to be popular in the future as well, as
obtaining high-quality annotated medical data is chal-
lenging.

Overall, object classification sees less use of pre-
trained networks compared to exam classifications,
mostly due to the need for incorporation of contextual
or three-dimensional information. Several authors have
found innovative solutions to add this information to
deep networks with good results, and as such we ex-
pect deep learning to become even more prominent for
this task in the near future.

3.2. Detection
3.2.1. Organ, region and landmark localization

Anatomical object localization (in space or time),
such as organs or landmarks, has been an important pre-
processing step in segmentation tasks or in the clinical
workflow for therapy planning and intervention. Lo-
calization in medical imaging often requires parsing of
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3D volumes. To solve 3D data parsing with deep learn-
ing algorithms, several approaches have been proposed
that treat the 3D space as a composition of 2D orthog-
onal planes. Yang et al. (2015) identified landmarks on
the distal femur surface by processing three indepen-
dent sets of 2D MRI slices (one for each plane) with
regular CNNs. The 3D position of the landmark was
defined as the intersection of the three 2D slices with
the highest classification output. de Vos et al. (2016b)
went one step further and localized regions of interest
(ROIs) around anatomical regions (heart, aortic arch,
and descending aorta) by identifying a rectangular 3D
bounding box after 2D parsing the 3D CT volume. Pre-
trained CNN architectures, as well as RBM, have been
used for the same purpose (Chen et al. (2015b); Ku-
mar et al. (2016); Cai et al. (2016b)), overcoming the
lack of data to learn better feature representations. All
these studies cast the localization task as a classification
task and as such generic deep learning architectures and
learning processes can be leveraged.

Other authors try to modify the network learning pro-
cess to directly predict locations. For example, Payer
et al. (2016) proposed to directly regress landmark lo-
cations with CNNs. They used landmark maps, where
each landmark is represented by a Gaussian, as ground
truth input data and the network is directly trained to
predict this landmark map. Another interesting ap-
proach was published by Ghesu et al. (2016a), in which
reinforcement learning is applied to the identification
of landmarks. The authors showed promising results in
several tasks: 2D cardiac MRI and ultrasound (US) and
3D head/neck CT.

Due to its increased complexity, only a few methods
addressed the direct localization of landmarks and re-
gions in the 3D image space. Zheng et al. (2015) re-
duced this complexity by decomposing 3D convolution
as three one-dimensional convolutions for carotid artery
bifurcation detection in CT data. Ghesu et al. (2016b)
proposed a sparse adaptive deep neural network pow-
ered by marginal space learning in order to deal with
data complexity in the detection of the aortic valve in
3D transesophageal echocardiogram.

CNNs have also been used for the localization of scan
planes or key frames in temporal data. Baumgartner
et al. (2016) trained CNNs on video frame data to de-
tect up to 12 standardized scan planes in mid-pregnancy
fetal US. Furthermore, they used saliency maps to ob-
tain a rough localization of the object of interest in the
scan plan (e.g. brain, spine). RNNs, particularly LSTM-
RNNs, have also been used to exploit the temporal in-
formation contained in medical videos, another type of
high dimensional data. Chen et al. (2015a), for example,

employed LSTM models to incorporate temporal infor-
mation of consecutive sequence in US videos for fetal
standard plane detection. Kong et al. (2016) combined
an LSTM-RNN with a CNN to detect the end-diastole
and end-systole frames in cine-MRI of the heart.

Concluding, localization through 2D image classifi-
cation with CNNs seems to be the most popular strat-
egy overall to identify organs, regions and landmarks,
with good results. However, several recent papers ex-
pand on this concept by modifying the learning pro-
cess such that accurate localization is directly empha-
sized, with promising results. We expect such strate-
gies to be explored further as they show that deep learn-
ing techniques can be adapted to a wide range of lo-
calization tasks (e.g. multiple landmarks). RNNs have
shown promise in localization in the temporal domain,
and multi-dimensional RNNs could play a role in spatial
localization as well.

3.2.2. Object or lesion detection
The detection of objects of interest or lesions in im-

ages is a key part of diagnosis and is one of the most
labor-intensive for clinicians. Typically, the tasks con-
sist of the localization and identification of small lesions
in the full image space. There has been a long research
tradition in computer-aided detection systems that are
designed to automatically detect lesions, improving the
detection accuracy or decreasing the reading time of hu-
man experts. Interestingly, the first object detection sys-
tem using CNNs was already proposed in 1995, using a
CNN with four layers to detect nodules in x-ray images
(Lo et al. (1995)).

Most of the published deep learning object detection
systems still uses CNNs to perform pixel (or voxel) clas-
sification, after which some form of post processing is
applied to obtain object candidates. As the classifica-
tion task performed at each pixel is essentially object
classification, CNN architecture and methodology are
very similar to those in section 3.1.2. The incorporation
of contextual or 3D information is also handled using
multi-stream CNNs (Section 2.3.2, for example by Roth
et al. (2016b) and Barbu et al. (2016). Teramoto et al.
(2016) used a multi-stream CNN to integrate CT and
Positron Emission Tomography (PET) data. Dou et al.
(2016c) used a 3D CNN to find micro-bleeds in brain
MRI. Last, as the annotation burden to generate train-
ing data can be similarly significant compared to ob-
ject classification, weakly-supervised deep learning has
been explored by Hwang and Kim (2016), who adopted
such a strategy for the detection of nodules in chest ra-
diographs and lesions in mammography.
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There are some aspects which are significantly differ-
ent between object detection and object classification.
One key point is that because every pixel is classified,
typically the class balance is skewed severely towards
the non-object class in a training setting. To add insult
to injury, usually the majority of the non-object sam-
ples are easy to discriminate, preventing the deep learn-
ing method to focus on the challenging samples. van
Grinsven et al. (2016) proposed a selective data sam-
pling in which wrongly classified samples were fed back
to the network more often to focus on challenging areas
in retinal images. Last, as classifying each pixel in a
sliding window fashion results in orders of magnitude
of redundant calculation, fCNNs, as used in Wolterink
et al. (2016), are important aspect of an object detection
pipeline as well.

Challenges in meaningful application of deep learn-
ing algorithms in object detection are thus mostly sim-
ilar to those in object classification. Only few pa-
pers directly address issues specific to object detection
like class imbalance/hard-negative mining or efficient
pixel/voxel-wise processing of images. We expect that
more emphasis will be given to those areas in the near
future, for example in the application of multi-stream
networks in a fully convolutional fashion.

3.3. Segmentation

3.3.1. Organ and substructure segmentation
The segmentation of organs and other substructures

in medical images allows quantitative analysis of clini-
cal parameters related to volume and shape, as, for ex-
ample, in cardiac or brain analysis. Furthermore, it is
often an important first step in computer-aided detection
pipelines. The task of segmentation is typically defined
as identifying the set of voxels which make up either
the contour or the interior of the object(s) of interest.
Segmentation is the most common subject of papers ap-
plying deep learning to medical imaging (Figure 1), and
as such has also seen the widest variety in methodol-
ogy, including the development of unique CNN-based
segmentation architectures and the wider application of
RNNs.

The most well-known of these novel CNN architec-
tures is U-net, published by Ronneberger et al. (2015)
(section 2.3.3). The two main architectural novelties in
U-net are the combination of an equal amount of up-
sampling and downsampling layers. Furthermore, there
are so-called skip connections between opposing con-
volution and deconvolution layers, which concatenate
features from these different layers. From a training
perspective this means that entire images/scans can be

processed by U-net in one forward pass, resulting in a
segmentation map directly. This allows U-net to take
into account the full context of the image, which can be
an advantage in contrast to patch-based CNNs. Further-
more, in an extended paper by Çiçek et al. (2016), it is
shown that a full 3D segmentation can be achieved by
feeding U-net with a few 2D annotated slices from the
same volume. Other authors have also built derivatives
of the U-net architecture; Milletari et al. (2016b), for
example, proposed a 3D-variant of U-net architecture,
called V-net, performing 3D image segmentation using
3D convolutional layers with an objective function di-
rectly based on the Dice coefficient. Drozdzal et al.
(2016) investigated the use of short ResNet-like skip
connections in addition to the long skip-connections in
a regular U-net.

RNNs have recently become more popular for seg-
mentation tasks. For example, Xie et al. (2016b) used
a spatial clockwork RNN to segment the perimysium
in H&E-histopathology images. This network takes
into account prior information from both the row and
column predecessors of the current patch. To incor-
porate bidirectional information from both left/top and
right/bottom neighbors, the RNN is applied four times
in different orientations and the end-result is concate-
nated and fed to a fully-connected layer. This produces
the final output for a single patch. Stollenga et al. (2015)
chose a different approach and use pyramid-shaped pre-
decessors by adding extra input connections. Andermatt
et al. (2016) used a complete 3D RNN with gated recur-
rent units to segment gray and white matter in a brain
MRI data set. Last, Poudel et al. (2016) combined a 2D
U-net architecture with a gated recurrent unit to perform
3D segmentation.

Although these specific segmentation architectures
offered compelling advantages, many authors have also
obtained excellent segmentation results with patch-
trained neural networks. One of the earliest papers cov-
ering medical image segmentation with deep learning
algorithms used such a strategy and was published by
Ciresan et al. (2012). They applied pixel-wise segmen-
tation of membranes in electron microscopy imagery in
a sliding window fashion. Most recent papers now use
fCNNs (subsection 2.3.3) in preference over sliding-
window-based classification to reduce redundant com-
putation.

fCNNs have also been extended to 3D and have
been applied to multiple targets at once: Korez et al.
(2016), used 3D fCNNs to generate vertebral body like-
lihood maps which drove deformable models for ver-
tebral body segmentation in MR images, Zhou et al.
(2016) segmented nineteen targets in the human torso,

10



and Moeskops et al. (2016b) trained a single fCNN to
segment brain MRI, the pectoral muscle in breast MRI,
and the coronary arteries in cardiac CT angiography
(CTA).

One challenge with voxel classification approaches
is that they sometimes lead to spurious responses. To
combat this, groups have tried to combine fCNNs with
graphical models like MRFs (Shakeri et al. (2016); Song
et al. (2015)) and Conditional Random Fields (CRFs)
(Christ et al. (2016); Gao et al. (2016c); Fu et al.
(2016a); Dou et al. (2016c); Cai et al. (2016a); Alansary
et al. (2016)) to refine the segmentation output. In most
of the cases, graphical models are applied on top of the
likelihood map produced by CNNs or fCNNs and act as
label regularizers.

Summarizing, segmentation in medical imaging has
seen a huge influx of deep learning related methods.
Custom architectures have been created to directly tar-
get the segmentation task. These have obtained promis-
ing results, rivaling and often improving over results ob-
tained with fCNNs.

3.3.2. Lesion segmentation
Segmentation of lesions combines the challenges of

object detection and organ and substructure segmen-
tation in the application of deep learning algorithms.
Global and local context are typically needed to per-
form accurate segmentation, such that multi-stream net-
works with different scales or non-uniformly sampled
patches are used as in for example Kamnitsas et al.
(2017) and Ghafoorian et al. (2016b). In lesion seg-
mentation we have also seen the application of U-net
and similar architectures to leverage both this global
and local context. The architecture used by Wang et al.
(2015), similar to the U-net, consists of the same down-
sampling and upsampling paths, but does not use skip
connections. Another U-net-like architecture was used
by Brosch et al. (2016) to segment white matter lesions
in brain MRI. However, they used 3D convolutions and
a single skip connection between the first convolutional
and last deconvolutional layers.

One other challenge that lesion segmentation shares
with object detection is class imbalance, as most vox-
els/pixels in an image are from the non-diseased class.
Some papers combat this by adapting the loss function:
Brosch et al. (2016) defined it to be a weighted combi-
nation of the sensitivity and the specificity, with a larger
weight for the specificity to make it less sensitive to the
data imbalance. Others balance the data set by perform-
ing data augmentation on positive samples (Litjens et al.
(2016); Pereira et al. (2016); Kamnitsas et al. (2017)).

Thus lesion segmentation sees a mixture of ap-
proaches used in object detection and organ segmenta-
tion. Developments in these two areas will most likely
naturally propagate to lesion segmentation as the exist-
ing challenges are also mostly similar.

3.4. Registration

Registration (i.e. spatial alignment) of medical im-
ages is a common image analysis task in which a coordi-
nate transform is calculated from one medical image to
another. Often this is performed in an iterative frame-
work where a specific type of (non-)parametric trans-
formation is assumed and a pre-determined metric (e.g.
L2-norm) is optimized. Although segmentation and le-
sion detection are more popular topics for deep learn-
ing, researchers have found that deep networks can be
beneficial in getting the best possible registration per-
formance. Broadly speaking, two strategies are preva-
lent in current literature: (1) using deep-learning net-
works to estimate a similarity measure for two images
to drive an iterative optimization strategy, and (2) to di-
rectly predict transformation parameters using deep re-
gression networks.

Wu et al. (2013), Simonovsky et al. (2016), and
Cheng et al. (2015) used the first strategy to try to opti-
mize registration algorithms. Cheng et al. (2015) used
two types of stacked auto-encoders to assess the local
similarity between CT and MRI images of the head.
Both auto-encoders take vectorized image patches of
CT and MRI and reconstruct them through four lay-
ers. After the networks are pre-trained using unsu-
pervised patch reconstruction they are fine-tuned using
two prediction layers stacked on top of the third layer
of the SAE. These prediction layers determine whether
two patches are similar (class 1) or dissimilar (class 2).
Simonovsky et al. (2016) used a similar strategy, al-
beit with CNNs, to estimate a similarity cost between
two patches from differing modalities. However, they
also presented a way to use the derivative of this met-
ric to directly optimize the transformation parameters,
which are decoupled from the network itself. Last, Wu
et al. (2013) combined independent subspace analysis
and convolutional layers to extract features from input
patches in an unsupervised manner. The resultant fea-
ture vectors are used to drive the HAMMER registration
algorithm instead of handcrafted features.

Miao et al. (2016) and Yang et al. (2016d) used deep
learning algorithms to directly predict the registration
transform parameters given input images. Miao et al.
(2016) leveraged CNNs to perform 3D model to 2D x-
ray registration to assess the pose and location of an
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implanted object during surgery. In total the transfor-
mation has 6 parameters, two translational, 1 scaling
and 3 angular parameters. They parameterize the fea-
ture space in steps of 20 degrees for two angular pa-
rameters and train a separate CNN to predict the update
to the transformation parameters given an digitally re-
constructed x-ray of the 3D model and the actual inter-
operative x-ray. The CNNs are trained with artificial
examples generated by manually adapting the transfor-
mation parameters for the input training data. They
showed that their approach has significantly higher reg-
istration success rates than using traditional - purely in-
tensity based - registration methods. Yang et al. (2016d)
tackled the problem of prior/current registration in brain
MRI using the OASIS data set. They used the large
deformation diffeomorphic metric mapping (LDDMM)
registration methodology as a basis. This method takes
as input an initial momentum value for each pixel which
is then evolved over time to obtain the final transfor-
mation. However, the calculation of the initial momen-
tum map is often an expensive procure. The authors
circumvent this by training a U-net like architecture to
predict the x- and y-momentum map given the input im-
ages. They obtain visually similar results but with sig-
nificantly improved execution time: 1500x speed-up for
2D and 66x speed-up for 3D.

In contrast to classification and segmentation, the re-
search community seems not have yet settled on the best
way to integrate deep learning techniques in registration
methods. Not many papers have yet appeared on the
subject and existing ones each have a distinctly differ-
ent approach. Thus, giving recommendations on what
method is most promising seems inappropriate. How-
ever, we expect to see many more contributions of deep
learning to medical image registration in the near future.

3.5. Other tasks in medical imaging

3.5.1. Content-based image retrieval
Content-based image retrieval (CBIR) is a technique

for knowledge discovery in massive databases and of-
fers the possibility to identify similar case histories, un-
derstand rare disorders, and, ultimately, improve patient
care. The major challenge in the development of CBIR
methods is extracting effective feature representations
from the pixel-level information and associating them
with meaningful concepts. The ability of deep CNN
models to learn rich features at multiple levels of ab-
straction has elicited interest from the CBIR commu-
nity.

All current approaches use (pre-trained) CNNs to ex-
tract feature descriptors from medical images. Anavi

et al. (2016) and Liu et al. (2016b) applied their meth-
ods to databases of X-ray images. Both used a five-layer
CNN and extracted features from the fully-connected
layers. Anavi et al. (2016) used the last layer and a
pre-trained network. Their best results were obtained
by feeding these features to a one-vs-all support vec-
tor machine (SVM) classifier to obtain the distance met-
ric. They showed that incorporating gender information
resulted in better performance than just CNN features.
Liu et al. (2016b) used the penultimate fully-connected
layer and a custom CNN trained to classify X-rays in
193 classes to obtain the descriptive feature vector. Af-
ter descriptor binarization and data retrieval using Ham-
ming separation values, the performance was inferior
to the state of the art, which the authors attributed to
small patch sizes of 96 pixels. The method proposed
by Shah et al. (2016) combines CNN feature descrip-
tors with hashing-forests. 1000 features were extracted
for overlapping patches in prostate MRI volumes, after
which a large feature matrix was constructed over all
volumes. Hashing forests were then used to compress
this into descriptors for each volume.

Content-based image retrieval as a whole has thus
not seen many successful applications of deep learning
methods yet, but given the results in other areas it seems
only a matter of time. An interesting avenue of research
could be the direct training of deep networks for the re-
trieval task itself.

3.5.2. Image Generation and Enhancement
A variety of image generation and enhancement

methods using deep architectures have been proposed,
ranging from removing obstructing elements in im-
ages, normalizing images, improving image quality,
data completion, and pattern discovery.

In image generation, 2D or 3D CNNs are used to
convert one input image into another. Typically these
architectures lack the pooling layers present in classifi-
cation networks. These systems are then trained with a
data set in which both the input and the desired output
are present (e.g. regular and bone-suppressed X-ray in
Yang et al. (2016c), 3T and 7T brain MRI in Bahrami
et al. (2016), PET from MRI in Li et al. (2014), CT from
MRI in Nie et al. (2016a)), defining the differences with
the desired output as the loss function. Li et al. (2014)
even showed that one can use these generated images in
computer-aided diagnosis systems for Alzheimer’s dis-
ease when the original data is missing or not acquired.

With multi-stream CNNs super-resolution images
can be generated from multiple low-resolution inputs
(section 2.3.2). In Oktay et al. (2016), multi-stream net-
works reconstructed high-resolution cardiac MRI from
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Table 1: Overview of papers using deep learning techniques for brain image analysis. All works use MRI unless otherwise mentioned.

Reference Method Application; remarks

Disorder classification (AD, MCI, Schizophrenia)

Brosch and Tam (2013) DBN AD/HC classification; Deep belief networks with convolutional RBMs for manifold learning
Plis et al. (2014) DBN Deep belief networks evaluated on brain network estimation, Schizophrenia and Huntington’s disease classification
Suk and Shen (2013) SAE AD/MCI classification; Stacked auto encoders with supervised fine tuning
Suk et al. (2014) RBM AD/MCI/HC classification; Deep Boltzmann Machines on MRI and PET modalities
Payan and Montana (2015) CNN AD/MCI/HC classification; 3D CNN pre-trained with sparse auto-encoders
Suk et al. (2015) SAE AD/MCI/HC classification; SAE for latent feature extraction on a large set of hand-crafted features from MRI and PET
Hosseini-Asl et al. (2016) CNN AD/MCI/HC classification; 3D CNN pre-trained with a 3D convolutional auto-encoder on fMRI data
Kim et al. (2016b) ANN Schizophrenia/NH classification on fMRI; Neural network showing advantage of pre-training with SAEs, and L1 sparsification
Ortiz et al. (2016) DBN AD/MCI/HC classification; An ensemble of Deep belief networks, with their votes fused using an SVM classifier
Pinaya et al. (2016) DBN Schizophrenia/NH classification; DBN pre-training followed by supervised fine-tuning
Sarraf and Tofighi (2016) CNN AD/HC classification; Adapted Lenet-5 architecture on fMRI data
Suk et al. (2016) SAE MCI/HC classification of fMRI data; Stacked auto-encoders for feature extraction, HMM as a generative model on top
Suk and Shen (2016) CNN AD/MCI/HC classification; CNN on sparse representations created by regression models
Shi et al. (2017) ANN AD/MCI/HC classification; Multi-modal stacked deep polynomial networks with an SVM classifier on top using MRI and PET

Tissue/anatomy/lesion/tumor segmentation

Guo et al. (2014) SAE Hippocampus segmentation; SAE for representation learning used for target/atlas patch similarity measurement
de Brebisson and Montana (2015) CNN Anatomical segmentation; fusing multi-scale 2D patches with a 3D patch using a CNN
Choi and Jin (2016) CNN Striatum segmentation; Two-stage (global/local) approximations with 3D CNNs
Stollenga et al. (2015) RNN Tissue segmentation; PyraMiD-LSTM, best brain segmentation results on MRBrainS13 (and competitive results on EM-ISBI12)
Zhang et al. (2015) CNN Tissue segmentation; multi-modal 2D CNN
Andermatt et al. (2016) RNN Tissue segmentation; two convolutional gated recurrent units in different directions for each dimension
Bao and Chung (2016) CNN Anatomical segmentation; Multi-scale late fusion CNN with random walker as a novel label consistency method
Birenbaum and Greenspan (2016) CNN Lesion segmentation; Multi-view (2.5D) CNN concatenating features from previous time step for a longitudinal analysis
Brosch et al. (2016) CNN Lesion segmentation; Convolutional encoder-decoder network with shortcut connections and convolutional RBM pretraining
Chen et al. (2016a) CNN Tissue segmentation; 3D res-net combining features from different layers
Ghafoorian et al. (2016b) CNN Lesion segmentation; CNN trained on non-uniformly sampled patch to integrate a larger context with a foviation effect
Ghafoorian et al. (2016a) CNN Lesion segmentation; multi-scale CNN with late fusion that integrates anatomical location information into network
Havaei et al. (2016b) CNN Tumor segmentation; CNN handling missing modalities with abstraction layer that transforms feature maps to their statistics
Havaei et al. (2016a) CNN Tumor segmentation; two-path way CNN with different receptive fields
Kamnitsas et al. (2017) CNN Tumor segmentation; 3D multi-scale fully convolutional network with CRF for label consistency
Kleesiek et al. (2016) CNN Brain extraction; 3D fully convolutional CNN on multi-modal input
Mansoor et al. (2016) SAE Visual pathway segmentation; Learning appearance features from SAE for steering the shape model for segmentation
Milletari et al. (2016a) CNN Anatomical segmentation on MRI and US; Hough-voting to acquire mapping from CNN features to full patch segmentations
Moeskops et al. (2016a) CNN Tissue segmentation; CNN trained on multiple patch sizes
Nie et al. (2016b) CNN Infant tissue segmentation; FCN with a late fusion method on different modalities
Pereira et al. (2016) CNN Tumor segmentation; CNN on multiple modality input
Shakeri et al. (2016) CNN Anatomical segmentation; FCN followed by Markov random fields
Zhao and Jia (2016) CNN Tumor segmentation; Multi-scale CNN with a late fusion architecture

Lesion/tumor detection and classification

Pan et al. (2015) CNN Tumor grading; 2D tumor patch classification using a CNN
Dou et al. (2015) ISA Microbleed detection; 3D stacked Independent Subspace Analysis for candidate feature extraction, SVM classification
Dou et al. (2016c) CNN Microbleed detection; 3D FCN for candidate segmentation followed by a 3D CNN as false positive reduction
Ghafoorian et al. (2017) CNN Lacune detection; FCN for candidate segmentation then a multi-scale 3D CNN with anatomical features as false positive reduction

Survival/disease activity/development prediction

Kawahara et al. (2016b) CNN Neurodevelopment prediction; CNN with specially-designed edge-to-edge, edge-to-node and node-to-graph conv. layers for brain nets
Nie et al. (2016c) CNN Survival prediction; features from a Multi-modal 3D CNN is fused with hand-crafted features to train an SVM
Yoo et al. (2016) CNN Disease activity prediction; Training a CNN on the Euclidean distance transform of the lesion masks as the input
van der Burgh et al. (2017) CNN Survival prediction; DBN on MRI and fusing it with clinical characteristics and structural connectivity data

Image construction/enhancement

Li et al. (2014) CNN Image construction; 3D CNN for constructing PET from MR images
Bahrami et al. (2016) CNN Image construction; 3D CNN for constructing 7T-like images from 3T MRI
Benou et al. (2016) SAE Denoising DCE-MRI; using an ensemble of denoising SAE (pretrained with RBMs)
Golkov et al. (2016) ANN Image construction; Per-pixel neural network to predict complex diffusion parameters based on fewer measurements
Hoffmann et al. (2016) ANN Image construction; Deep neural nets with SRelu nonlinearity for thermal image construction
Nie et al. (2016a) CNN Image construction; 3D fully convolutional network for constructing CT from MR images
Sevetlidis et al. (2016) ANN Image construction; Encoder-decoder network for synthesizing one MR modality from another

Other

Brosch et al. (2014) DBN Manifold Learning; DBN with conv. RBM layers for modeling the variability in brain morphology and lesion distribution in MS
Cheng et al. (2015) ANN Similarity measurement; neural network fusing the moving and reference image patches, pretrained with SAE
Huang et al. (2016) RBM fMRI blind source separation; RBM for both internal and functional interaction-induced latent sources detection
Simonovsky et al. (2016) CNN Similarity measurement; 3D CNN estimating similarity between reference and moving images stacked in the input
Wu et al. (2013) ISA Correspondence detection in deformable registration; stacked convolutional ISA for unsupervised feature learning
Yang et al. (2016d) CNN Image registration; Conv. encoder-decoder net. predicting momentum in x and y directions, given the moving and fixed image patches

one or more low-resolution input MRI volumes. Not
only can this strategy be used to infer missing spatial
information, but can also be leveraged in other domains
(e.g. inferring advanced MRI diffusion parameters from

limited data (Golkov et al. (2016))). Other image en-
hancement applications like intensity normalization and
denoising have seen only limited application of deep
learning algorithms. Janowczyk et al. (2016a) used
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Figure 3: Collage of some medical imaging applications in which
deep learning has achieved state-of-the-art results. From top-left to
bottom-right: mammographic mass classification (Kooi et al. (2016)),
segmentation of lesions in the brain (top ranking in BRATS, ISLES
and MRBrains challenges, image from Ghafoorian et al. (2016b), leak
detection in airway tree segmentation (Charbonnier et al. (2017)), di-
abetic retinopathy classification (Kaggle Diabetic Retinopathy chal-
lenge 2015, image from van Grinsven et al. (2016)), prostate seg-
mentation (top rank in PROMISE12 challenge), nodule classification
(top ranking in LUNA16 challenge), breast cancer metastases detec-
tion in lymph nodes (top ranking and human expert performance in
CAMELYON16), human expert performance in skin lesion classifi-
cation (Esteva et al. (2017)), and state-of-the-art bone suppression in
x-rays (image from Yang et al. (2016c)).

SAEs to normalize H&E-stained histopathology images
whereas Benou et al. (2016) used CNNs to perform de-
noising in DCE-MRI time-series.

Image generation has seen impressive results with
very creative applications of deep networks in signifi-
cantly differing tasks. One can only expect the number
of tasks to increase further in the future.

3.5.3. Combining Image Data With Reports
The combination of text reports and medical image

data has led to two avenues of research: (1) leverag-
ing reports to improve image classification accuracy
(Schlegl et al. (2015)), and (2) generating text reports
from images (Shin et al. (2015, 2016a); Wang et al.
(2016e); Kisilev et al. (2016)); the latter inspired by
recent caption generation papers from natural images
(Karpathy and Fei-Fei (2015)). To the best of our
knowledge, the first step towards leveraging reports was
taken by Schlegl et al. (2015), who argued that large

amounts of annotated data may be difficult to acquire
and proposed to add semantic descriptions from reports
as labels. The system was trained on sets of images
along with their textual descriptions and was taught to
predict semantic class labels during test time. They
showed that semantic information increases classifica-
tion accuracy for a variety of pathologies in Optical Co-
herence Tomography (OCT) images.

Shin et al. (2015) and Wang et al. (2016e) mined se-
mantic interactions between radiology reports and im-
ages from a large data set extracted from a PACS sys-
tem. They employed latent Dirichlet allocation (LDA),
a type of stochastic model that generates a distribution
over a vocabulary of topics based on words in a docu-
ment. In a later work, Shin et al. (2016a) proposed a sys-
tem to generate descriptions from chest X-rays. A CNN
was employed to generate a representation of an image
one label at a time, which was then used to train an
RNN to generate sequence of MeSH keywords. Kisilev
et al. (2016) used a completely different approach and
predicted categorical BI-RADS descriptors for breast
lesions. In their work they focused on three descrip-
tors used in mammography: shape, margin, and density,
where each have their own class label. The system was
fed with the image data and region proposals and pre-
dicts the correct label for each descriptor (e.g. for shape
either oval, round, or irregular).

Given the wealth of data that is available in PACS
systems in terms of images and corresponding diag-
nostic reports, it seems like an ideal avenue for future
deep learning research. One could expect that advances
in captioning natural images will in time be applied to
these data sets as well.

4. Application areas

This section presents an overview of deep learning
contributions to the various application areas in medi-
cal imaging. We highlight some key contributions and
discuss performance of systems on large data sets and
on public challenge data sets. All these challenges are
listed on http:\\www.grand-challenge.org.

4.1. Brain
DNNs have been extensively used for brain image

analysis in several different application domains (Ta-
ble 1). A large number of studies address classification
of Alzheimer’s disease and segmentation of brain tis-
sue and anatomical structures (e.g. the hippocampus).
Other important areas are detection and segmentation
of lesions (e.g. tumors, white matter lesions, lacunes,
micro-bleeds).
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Table 2: Overview of papers using deep learning techniques for retinal image analysis. All works use CNNs.

Color fundus images: segmentation of anatomical structures and quality assessment

Fu et al. (2016b) Blood vessel segmentation; CNN combined with CRF to model long-range pixel interactions
Fu et al. (2016a) Blood vessel segmentation; extending the approach by Fu et al. (2016b) by reformulating CRF as RNN
Mahapatra et al. (2016) Image quality assessment; classification output using CNN-based features combined with the output using saliency maps
Maninis et al. (2016) Segmentation of blood vessels and optic disk; VGG-19 network extended with specialized layers for each segmentation task
Wu et al. (2016) Blood vessel segmentation; patch-based CNN followed by mapping PCA solution of last layer feature maps to full segmentation
Zilly et al. (2017) Segmentation of the optic disk and the optic cup; simple CNN with filters sequentially learned using boosting

Color fundus images: detection of abnormalities and diseases

Chen et al. (2015d) Glaucoma detection; end-to-end CNN, the input is a patch centered at the optic disk
Abràmoff et al. (2016) Diabetic retinopathy detection; end-to-end CNN, outperforms traditional method, evaluated on a public dataset
Burlina et al. (2016) Age-related macular degeneration detection; uses overfeat pretrained network for feature extraction
van Grinsven et al. (2016) Hemorrhage detection; CNN dynamically trained using selective data sampling to perform hard negative mining
Gulshan et al. (2016) Diabetic retinopathy detection; Inception network, performance comparable to a panel of seven certified ophthalmologists
Prentasic and Loncaric (2016) Hard exudate detection; end-to-end CNN combined with the outputs of traditional classifiers for detection of landmarks
Worrall et al. (2016) Retinopathy of prematurity detection; fine-tuned ImageNet trained GoogLeNet, feature map visualization to highlight disease

Work in other imaging modalities

Gao et al. (2015) Cataract classification in slit lamp images; CNN followed by a set of recursive neural networks to extract higher order features
Schlegl et al. (2015) Fluid segmentation in OCT; weakly supervised CNN improved with semantic descriptors from clinical reports
Prentasic et al. (2016) Blood vessel segmentation in OCT angiography; simple CNN, segmentation of several capillary networks

Apart from the methods that aim for a scan-level
classification (e.g. Alzheimer diagnosis), most meth-
ods learn mappings from local patches to representa-
tions and subsequently from representations to labels.
However, the local patches might lack the contextual
information required for tasks where anatomical infor-
mation is paramount (e.g. white matter lesion segmen-
tation). To tackle this, Ghafoorian et al. (2016b) used
non-uniformly sampled patches by gradually lowering
sampling rate in patch sides to span a larger context.
An alternative strategy used by many groups is multi-
scale analysis and a fusion of representations in a fully-
connected layer.

Even though brain images are 3D volumes in all sur-
veyed studies, most methods work in 2D, analyzing the
3D volumes slice-by-slice. This is often motivated by
either the reduced computational requirements or the
thick slices relative to in-plane resolution in some data
sets. More recent publications had also employed 3D
networks.

DNNs have completely taken over many brain image
analysis challenges. In the 2014 and 2015 brain tumor
segmentation challenges (BRATS), the 2015 longitu-
dinal multiple sclerosis lesion segmentation challenge,
the 2015 ischemic stroke lesion segmentation challenge
(ISLES), and the 2013 MR brain image segmentation
challenge (MRBrains), the top ranking teams to date
have all used CNNs. Almost all of the aforementioned
methods are concentrating on brain MR images. We ex-
pect that other brain imaging modalities such as CT and
US can also benefit from deep learning based analysis.

4.2. Eye

Ophthalmic imaging has developed rapidly over the
past years, but only recently are deep learning algo-
rithms being applied to eye image understanding. As
summarized in Table 2, most works employ simple
CNNs for the analysis of color fundus imaging (CFI).
A wide variety of applications are addressed: segmen-
tation of anatomical structures, segmentation and detec-
tion of retinal abnormalities, diagnosis of eye diseases,
and image quality assessment.

In 2015, Kaggle organized a diabetic retinopathy de-
tection competition: Over 35,000 color fundus images
were provided to train algorithms to predict the sever-
ity of disease in 53,000 test images. The majority of
the 661 teams that entered the competition applied deep
learning and four teams achieved performance above
that of humans, all using end-to-end CNNs. Recently
Gulshan et al. (2016) performed a thorough analysis
of the performance of a Google Inception v3 network
for diabetic retinopathy detection, showing performance
comparable to a panel of seven certified ophthalmolo-
gists.

4.3. Chest

In thoracic image analysis of both radiography and
computed tomography, the detection, characterization,
and classification of nodules is the most commonly ad-
dressed application. Many works add features derived
from deep networks to existing feature sets or compare
CNNs with classical machine learning approaches us-
ing handcrafted features. In chest X-ray, several groups
detect multiple diseases with a single system. In CT
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Table 3: Overview of papers using deep learning techniques for chest x-ray image analysis.

Reference Application Remarks

Lo et al. (1995) Nodule detection Classifies candidates from small patches with two-layer CNN, each with 12 5 × 5 filters
Anavi et al. (2015) Image retrieval Combines classical features with those from pre-trained CNN for image retrieval using SVM
Bar et al. (2015) Pathology detection Features from a pre-trained CNN and low level features are used to detect various diseases
Anavi et al. (2016) Image retrieval Continuation of Anavi et al. (2015), adding age and gender as features
Bar et al. (2016) Pathology detection Continuation of Bar et al. (2015), more experiments and adding feature selection
Cicero et al. (2016) Pathology detection GoogLeNet CNN detects five common abnormalities, trained and validated on a large data set
Hwang et al. (2016) Tuberculosis detection Processes entire radiographs with a pre-trained fine-tuned network with 6 convolution layers
Kim and Hwang (2016) Tuberculosis detection MIL framework produces heat map of suspicious regions via deconvolution
Shin et al. (2016a) Pathology detection CNN detects 17 diseases, large data set (7k images), recurrent networks produce short captions
Rajkomar et al. (2017) Frontal/lateral classification Pre-trained CNN performs frontal/lateral classification task
Yang et al. (2016c) Bone suppression Cascade of CNNs at increasing resolution learns bone images from gradients of radiographs
Wang et al. (2016a) Nodule classification Combines classical features with CNN features from pre-trained ImageNet CNN

Table 4: Overview of papers using deep learning techniques for chest CT image analysis.

Reference Application; remarks

Segmentation

Charbonnier et al. (2017) Airway segmentation where multi-view CNN classifies candidate branches as true airways or leaks

Nodule detection and analysis

Ciompi et al. (2015) Used a standard feature extractor and a pre-trained CNN to classify detected lesions as benign peri-fissural nodules
van Ginneken et al. (2015) Detects nodules with pre-trained CNN features from orthogonal patches around candidate, classified with SVM
Shen et al. (2015b) Three CNNs at different scales estimate nodule malignancy scores of radiologists (LIDC-IDRI data set)
Chen et al. (2016d) Combines features from CNN, SDAE and classical features to characterize nodules from LIDC-IDRI data set
Ciompi et al. (2016) Multi-stream CNN to classify nodules into subtypes: solid, part-solid, non-solid, calcified, spiculated, perifissural
Dou et al. (2016b) Uses 3D CNN around nodule candidates; ranks #1 in LUNA16 nodule detection challenge
Li et al. (2016a) Detects nodules with 2D CNN that processes small patches around a nodule
Setio et al. (2016) Detects nodules with end-to-end trained multi-stream CNN with 9 patches per candidate
Shen et al. (2016) 3D CNN classifies volume centered on nodule as benign/malignant, results are combined to patient level prediction
Sun et al. (2016b) Same dataset as Shen et al. (2015b), compares CNN, DBN, SDAE and classical computer-aided diagnosis schemes
Teramoto et al. (2016) Combines features extracted from 2 orthogonal CT patches and a PET patch

Interstitial lung disease

Anthimopoulos et al. (2016) Classification of 2D patches into interstitial lung texture classes using a standard CNN
Christodoulidis et al. (2017) 2D interstitial pattern classification with CNNs pre-trained with a variety of texture data sets
Gao et al. (2016c) Propagates manually drawn segmentations using CNN and CRF for more accurate interstitial lung disease reference
Gao et al. (2016a) AlexNet applied to large parts of 2D CT slices to detect presence of interstitial patterns
Gao et al. (2016b) Uses regression to predict area covered in 2D slice with a particular interstitial pattern
Tarando et al. (2016) Combines existing computer-aided diagnosis system and CNN to classify lung texture patterns.
van Tulder and de Bruijne (2016) Classification of lung texture and airways using an optimal set of filters derived from DBNs and RBMs

Other applications

Tajbakhsh et al. (2015a) Multi-stream CNN to detect pulmonary embolism from candidates obtained from a tobogganing algorithm
Carneiro et al. (2016) Predicts 5-year mortality from thick slice CT scans and segmentation masks
de Vos et al. (2016a) Identifies the slice of interest and determine the distance between CT slices

the detection of textural patterns indicative of intersti-
tial lung diseases is also a popular research topic.

Chest radiography is the most common radiological
exam; several works use a large set of images with text
reports to train systems that combine CNNs for image
analysis and RNNs for text analysis. This is a branch of
research we expect to see more of in the near future.

In a recent challenge for nodule detection in CT,
LUNA16, CNN architectures were used by all top per-
forming systems. This is in contrast with a previ-
ous lung nodule detection challenge, ANODE09, where
handcrafted features were used to classify nodule candi-

dates. The best systems in LUNA16 still rely on nodule
candidates computed by rule-based image processing,
but systems that use deep networks for candidate detec-
tion also performed very well (e.g. U-net). Estimating
the probability that an individual has lung cancer from
a CT scan is an important topic: It is the objective of
the Kaggle Data Science Bowl 2017, with $1 million in
prizes and more than one thousand participating teams.

4.4. Digital pathology and microscopy

The growing availability of large scale gigapixel
whole-slide images (WSI) of tissue specimen has made
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Table 5: Overview of papers using deep learning for digital pathology images. The staining and imaging modality abbreviations used in the table are
as follows: H&E: hematoxylin and eosin staining, TIL: Tumor-infiltrating lymphocytes, BCC: Basal cell carcinoma, IHC: immunohistochemistry,
RM: Romanowsky, EM: Electron microscopy, PC: Phase contrast, FL: Fluorescent, IFL: Immunofluorescent, TPM: Two-photon microscopy, CM:
Confocal microscopy, Pap: Papanicolaou.

Reference Topic Staining\Modality Method

Nucleus detection, segmentation, and classification

Cireşan et al. (2013) Mitosis detection H&E CNN-based pixel classifier
Cruz-Roa et al. (2013) Detection of basal cell carcinoma H&E Convolutional auto-encoder neural network
Malon and Cosatto (2013) Mitosis detection H&E Combines shapebased features with CNN
Wang et al. (2014) Mitosis detection H&E Cascaded ensemble of CNN and handcrafted features
Ferrari et al. (2015) Bacterial colony counting Culture plate CNN-based patch classifier
Ronneberger et al. (2015) Cell segmentation EM U-Net with deformation augmentation
Shkolyar et al. (2015) Mitosis detection Live-imaging CNN-based patch classifier
Song et al. (2015) Segmentation of cytoplasm and nuclei H&E Multi-scale CNN and graph-partitioning-based method
Xie et al. (2015a) Nucleus detection Ki-67 CNN model that learns the voting offset vectors and voting confidence
Xie et al. (2015b) Nucleus detection H&E, Ki-67 CNN-based structured regression model for cell detection
Akram et al. (2016) Cell segmentation FL, PC, H&E fCNN for cell bounding box proposal and CNN for segmentation
Albarqouni et al. (2016) Mitosis detection H&E Incorporated ‘crowed sourcing’ layer into the CNN framework
Bauer et al. (2016) Nucleus classification IHC CNN-based patch classifier
Chen et al. (2016b) Mitosis detection H&E Deep regression network (DRN)
Gao et al. (2016e) Nucleus classification IFL Classification of Hep2-cells with CNN
Han et al. (2016) Nucleus classification IFL Classification of Hep2-cells with CNN
Janowczyk et al. (2016b) Nucleus segmentation H&E Resolution adaptive deep hierarchical learning scheme
Kashif et al. (2016) Nucleus detection H&E Combination of CNN and hand-crafted features
Mao and Yin (2016) Mitosis detection PC Hierarchical CNNs for patch sequence classification
Mishra et al. (2016) Classification of mitochondria EM CNN-based patch classifier
Phan et al. (2016) Nucleus classification FL Classification of Hep2-cells using transfer learning (pre-trained CNN)
Romo-Bucheli et al. (2016) Tubule nuclei detection H&E CNN-based classification of pre-selected candidate nuclei
Sirinukunwattana et al. (2016) Nucleus detection and classification H&E CNN with spatially constrained regression
Song et al. (2017) Cell segmentation H&E Multi-scale CNN
Turkki et al. (2016) TIL detection H&E CNN-based classification of superpixels
Veta et al. (2016) Nuclear area measurement H&E A CNN directly measures nucleus area without requiring segmentation
Wang et al. (2016d) Subtype cell detection H&E Combination of two CNNs for joint cell detection and classification
Xie et al. (2016a) Nucleus detection and cell counting FL and H&E Microscopy cell counting with fully convolutional regression networks
Xing et al. (2016) Nucleus segmentation H&E, IHC CNN and selection-based sparse shape model
Xu et al. (2016b) Nucleus detection H&E Stacked sparse auto-encoders (SSAE)
Xu and Huang (2016) Nucleus detection Various General deep learning framework to detect cells in whole-slide images
Yang et al. (2016b) Glial cell segmentation TPM fCNN with an iterative k-terminal cut algorithm
Yao et al. (2016) Nucleus classification H&E Classifies cellular tissue into tumor, lymphocyte, and stromal
Zhao et al. (2016) Classification of leukocytes RM CNN-based patch classifier

Large organ segmentation

Ciresan et al. (2012) Segmentation of neuronal membranes EM Ensemble of several CNNs with different architectures
Kainz et al. (2015) Segmentation of colon glands H&E Used two CNNs to segment glands and their separating structures
Apou et al. (2016) Detection of lobular structures in breast IHC Combined the outputs of a CNN and a texture classification system
BenTaieb and Hamarneh (2016) Segmentation of colon glands H&E fCNN with a loss accounting for smoothness and object interactions
BenTaieb et al. (2016) Segmentation of colon glands H&E A multi-loss fCNN to perform both segmentation and classification
Chen et al. (2017) Segmentation of colon glands H&E Deep contour-aware CNN
Çiçek et al. (2016) Segmentation of xenopus kidney CM 3D U-Net
Drozdzal et al. (2016) Segmentation of neuronal structures EM fCNN with skip connections
Li et al. (2016b) Segmentation of colon glands H&E Compares CNN with an SVM using hand-crafted features
Teikari et al. (2016) Volumetric vascular segmentation FL Hybrid 2D-3D CNN architecture
Wang et al. (2016c) Segmentation of messy and muscle regions H&E Conditional random field jointly trained with an fCNN
Xie et al. (2016b) Perimysium segmentation H&E 2D spatial clockwork RNN
Xu et al. (2016d) Segmentation of colon glands H&E Used three CNNs to predict gland and contour pixels
Xu et al. (2016a) Segmenting epithelium & stroma H&E, IHC CNNs applied to over-segmented image regions (superpixels)

Detection and classification of disease

Cruz-Roa et al. (2014) Detection of invasive ductal carcinoma H&E CNN-based patch classifier
Xu et al. (2014) Patch-level classification of colon cancer H&E Multiple instance learning framework with CNN features
Bychkov et al. (2016) Outcome prediction of colorectal cancer H&E Extracted CNN features from epithelial tissue for prediction
Chang et al. (2017) Multiple cancer tissue classification Various Transfer learning using multi-Scale convolutional sparse coding
Günhan Ertosun and Rubin (2015) Grading glioma H&E Ensemble of CNNs
Källén et al. (2016) Predicting Gleason score H&E OverFeat pre-trained network as feature extractor
Kim et al. (2016a) Thyroid cytopathology classification H&E, RM & Pap Fine-tuning pre-trained AlexNet
Litjens et al. (2016) Detection of prostate and breast cancer H&E fCNN-based pixel classifier
Quinn et al. (2016) Malaria, tuberculosis and parasites detection Light microscopy CNN-based patch classifier
Rezaeilouyeh et al. (2016) Gleason grading and breast cancer detection H&E The system incorporates shearlet features inside a CNN
Schaumberg et al. (2016) SPOP mutation prediction of prostate cancer H&E Ensemble of ResNets
Wang et al. (2016b) Metastases detection in lymph node H&E Ensemble of CNNs with hard negative mining

Other pathology applications

Janowczyk et al. (2016a) Stain normalization H&E Used SAE for classifying tissue and subsequent histogram matching
Janowczyk and Madabhushi (2016) Deep learning tutorial Various Covers different detecting, segmentation, and classification tasks
Sethi et al. (2016) Comparison of normalization algorithms H&E Presents effectiveness of stain normalization for application of CNNs
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Table 6: Overview of papers using deep learning techniques for breast image analysis. MG = mammography; TS = tomosynthesis; US = ultrasound;
ADN = Adaptive Deconvolution Network.

Reference Modality Method Application; remarks

Sahiner et al. (1996) MG CNN First application of a CNN to mammography
Jamieson et al. (2012) MG, US ADN Four layer ADN, an early form of CNN for mass classification
Fonseca et al. (2015) MG CNN Pre-trained network extracted features classified with SVM for breast density estimation
Akselrod-Ballin et al. (2016) MG CNN Use a modified region proposal CNN (R-CNN) for the localization and classification of masses
Arevalo et al. (2016) MG CNN Lesion classification, combination with hand-crafted features gave the best performance
Dalmis et al. (2016) MRI CNN Breast and fibroglandular tissue segmentation
Dubrovina et al. (2016) MG CNN Tissue classification using regular CNNs
Dhungel et al. (2016) MG CNN Combination of different CNNs combined with hand-crafted features
Fotin et al. (2016) TS CNN Improved state-of-the art for mass detection in tomosynthesis
Hwang and Kim (2016) MG CNN Weakly supervised CNN for localization of masses
Huynh et al. (2016) MG CNN Pre-trained CNN on natural image patches applied to mass classification
Kallenberg et al. (2016) MG SAE Unsupervised CNN feature learning with SAE for breast density classification
Kisilev et al. (2016) MG CNN R-CNN combined with multi-class loss trained on semantic descriptions of potential masses
Kooi et al. (2016) MG CNN Improved the state-of-the art for mass detection and show human performance on a patch level
Qiu et al. (2016) MG CNN CNN for direct classification of future risk of developing cancer based on negative mammograms
Samala et al. (2016a) TS CNN Microcalcification detection
Samala et al. (2016b) TS CNN Pre-trained CNN on mammographic masses transfered to tomosynthesis
Sun et al. (2016a) MG CNN Semi-supervised CNN for classification of masses
Zhang et al. (2016c) US RBM Classification benign vs. malignant with shear wave elastography
Kooi et al. (2017) MG CNN Pre-trained CNN on mass/normal patches to discriminate malignant masses from (benign) cysts
Wang et al. (2017) MG CNN Detection of cardiovascular disease based on vessel calcification

digital pathology and microscopy a very popular appli-
cation area for deep learning techniques. The developed
techniques applied to this domain focus on three broad
challenges: (1) Detecting, segmenting, or classifying
nuclei, (2) segmentation of large organs, and (3) detect-
ing and classifying the disease of interest at the lesion-
or WSI-level. Table 5 presents an overview for each of
these categories.

Deep learning techniques have also been applied for
normalization of histopathology images. Color normal-
ization is an important research area in histopathology
image analysis. In Janowczyk et al. (2016a), a method
for stain normalization of hematoxylin and eosin (H&E)
stained histopathology images was presented based on
deep sparse auto-encoders. Recently, the importance of
color normalization was demonstrated by Sethi et al.
(2016) for CNN based tissue classification in H&E
stained images.

The introduction of grand challenges in digital
pathology has fostered the development of comput-
erized digital pathology techniques. The challenges
that evaluated existing and new approaches for analy-
sis of digital pathology images are: EM segmentation
challenge 2012 for the 2D segmentation of neuronal
processes, mitosis detection challenges in ICPR 2012
and AMIDA 2013, GLAS for gland segmentation and,
CAMELYON16 and TUPAC for processing breast can-
cer tissue samples.

In both ICPR 2012 and the AMIDA13 challenges on
mitosis detection the IDSIA team outperformed other

algorithms with a CNN based approach (Cireşan et al.
(2013)). The same team had the highest performing sys-
tem in EM 2012 (Ciresan et al. (2012)) for 2D segmen-
tation of neuronal processes. In their approach, the task
of segmenting membranes of neurons was performed
by mild smoothing and thresholding of the output of a
CNN, which computes pixel probabilities.

GLAS addressed the problem of gland instance seg-
mentation in colorectal cancer tissue samples. Xu et al.
(2016d) achieved the highest rank using three CNN
models. The first CNN classifies pixels as gland ver-
sus non-gland. From each feature map of the first
CNN, edge information is extracted using the holisti-
cally nested edge technique, which uses side convolu-
tions to produce an edge map. Finally, a third CNN
merges gland and edge maps to produce the final seg-
mentation.

CAMELYON16 was the first challenge to provide
participants with WSIs. Contrary to other medical
imaging applications, the availability of large amount
of annotated data in this challenge allowed for train-
ing very deep models such as 22-layer GoogLeNet
(Szegedy et al. (2014)), 16-layer VGG-Net (Simonyan
and Zisserman (2014)), and 101-layer ResNet (He et al.
(2015)). The top-five performing systems used one
of these architectures. The best performing solution
in the Camelyon16 challenge was presented in Wang
et al. (2016b). This method is based on an ensemble
of two GoogLeNet architectures, one trained with and
one without hard-negative mining to tackle the chal-
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lenge. The latest submission of this team using the WSI
standardization algorithm by Ehteshami Bejnordi et al.
(2017) achieved an AUC of 0.9935, for task 2, which
outperformed the AUC of a pathologist (AUC = 0.966)
who independently scored the complete test set.

The recently held TUPAC challenge addressed detec-
tion of mitosis in breast cancer tissue, and prediction
of tumor grading at the WSI level. The top perform-
ing system by Paeng et al. (2016) achieved the highest
performance in all tasks. The method has three main
components: (1) Finding high cell density regions, (2)
using a CNN to detect mitoses in the regions of interest,
(3) converting the results of mitosis detection to a fea-
ture vector for each WSI and using an SVM classifier
to compute the tumor proliferation and molecular data
scores.

4.5. Breast
One of the earliest DNN applications from Sahiner

et al. (1996) was on breast imaging. Recently, interest
has returned which resulted in significant advances over
the state of the art, achieving the performance of human
readers on ROIs (Kooi et al. (2016)). Since most breast
imaging techniques are two dimensional, methods suc-
cessful in natural images can be easily transferred. With
one exception, the only task addressed is the detection
of breast cancer; this consisted of three subtasks: (1)
detection and classification of mass-like lesions, (2) de-
tection and classification of micro-calcifications, and (3)
breast cancer risk scoring of images. Mammography is
by far the most common modality and has consequently
enjoyed the most attention. Work on tomosynthesis,
US, and shear wave elastography is still scarce, and we
have only one paper that analyzed breast MRI with deep
learning; these other modalities will likely receive more
attention in the next few years. Table 6 summarizes the
literature and main messages.

Since many countries have screening initiatives for
breast cancer, there should be massive amounts of data
available, especially for mammography, and therefore
enough opportunities for deep models to flourish. Un-
fortunately, large public digital databases are unavail-
able; older scanned screen-film data sets are still in use.
Challenges such as the recently launched DREAM chal-
lenge have not yet had the desired success.

As a result, many papers used small data sets result-
ing in mixed performance. Several projects have ad-
dressed this issue by exploring semi-supervised learn-
ing (Sun et al. (2016a)), weakly supervised learning
(Hwang and Kim (2016)), and transfer learning (Samala
et al. (2016b); Kooi et al. (2017)). Another method com-
bines deep models with handcrafted features (Dhungel

et al. (2016)), which have been shown to be complemen-
tary still, even for very big data sets (Kooi et al. (2016)).
State of the art techniques for mass-like lesion detection
and classification tend to follow a two-stage pipeline
with a candidate detector; this design reduces the image
to a set of potentially malignant lesions, which are fed to
a deep CNN (Fotin et al. (2016); Kooi et al. (2016)). Al-
ternatives use a region proposal network (R-CNN) that
bypasses the cascaded approach (Akselrod-Ballin et al.
(2016); Kisilev et al. (2016)).

When large data sets are available, good results can
be obtained. At the SPIE Medical Imaging confer-
ence of 2016, a researcher from a leading company in
the mammography CAD field told a packed conference
room how a few weeks of experiments with a standard
architecture (AlexNet) - trained on the company’s pro-
prietary database - yielded a performance that was su-
perior to what years of engineering handcrafted feature
systems had achieved (Fotin et al. (2016)).

4.6. Cardiac

Deep learning has been applied to many aspects of
cardiac image analysis; the literature is summarized in
Table 7. MRI is the most researched modality and left
ventricle segmentation the most common task, but the
number of applications is highly diverse: segmenta-
tion, tracking, slice classification, image quality assess-
ment, automated calcium scoring and coronary center-
line tracking, and super-resolution.

Most papers used simple 2D CNNs and analyzed the
3D and often 4D data slice by slice; the exception is
Wolterink et al. (2016) where 3D CNNs were used.
DBNs are used in four papers, but these all originated
from the same author group. The DBNs are only used
for feature extraction and are integrated in compound
segmentation frameworks. Two papers are exceptional
because they combined CNNs with RNNs: Poudel et al.
(2016) introduced a recurrent connection within the U-
net architecture to segment the left ventricle slice by
slice and learn what information to remember from the
previous slices when segmenting the next one. Kong
et al. (2016) used an architecture with a standard 2D
CNN and an LSTM to perform temporal regression to
identify specific frames and a cardiac sequence. Many
papers use publicly available data. The largest chal-
lenge in this field was the 2015 Kaggle Data Science
Bowl where the goal was to automatically measure end-
systolic and end-diastolic volumes in cardiac MRI. 192
teams competed for $200,000 in prize money and the
top ranking teams all used deep learning, in particular
fCNN or U-net segmentation schemes.
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Table 7: Overview of papers using deep learning techniques for cardiac image analysis.

Reference Modality Method Application; remarks

Emad et al. (2015) MRI CNN Left ventricle slice detection; simple CNN indicates if structure is present
Avendi et al. (2016) MRI CNN Left ventricle segmentation; AE used to initialize filters because training data set was small
Kong et al. (2016) MRI RNN Identification of end-diastole and end-systole frames from cardiac sequences
Oktay et al. (2016) MRI CNN Super-resolution; U-net/ResNet hybrid, compares favorably with standard superresolution methods
Poudel et al. (2016) MRI RNN Left ventricle segmentation; RNN processes stack of slices, evaluated on several public datasets
Rupprecht et al. (2016) MRI CNN Cardiac structure segmentation; patch-based CNNs integrated in active contour framework
Tran (2016) MRI CNN Left and right ventricle segmentation; 2D fCNN architecture, evaluated on several public data sets
Yang et al. (2016a) MRI CNN Left ventricle segmentation; CNN combined with multi-atlas segmentation
Zhang et al. (2016b) MRI CNN Identifying presence of apex and base slices in cardiac exam for quality assessment
Ngo et al. (2017) MRI DBN Left ventricle segmentation; DBN is used to initialize a level set framework

Carneiro et al. (2012) US DBN Left ventricle segmentation; DBN embedded in system using landmarks and non-rigid registration
Carneiro and Nascimento (2013) US DBN Left ventricle tracking; extension of Carneiro et al. (2012) for tracking
Chen et al. (2016c) US CNN Structure segmentation in 5 different 2D views; uses transfer learning
Ghesu et al. (2016b) US CNN 3D aortic valve detection and segmentation; uses shallow and deeper sparse networks
Nascimento and Carneiro (2016) US DBN Left ventricle segmentation; DBN applied to patches steers multi-atlas segmentation process
Moradi et al. (2016a) US CNN Automatic generation of text descriptions for Doppler US images of cardiac valves using doc2vec

Gülsün et al. (2016) CT CNN Coronary centerline extraction; CNN classifies paths as correct or leakages
Lessmann et al. (2016) CT CNN Coronary calcium detection in low dose ungated CT using multi-stream CNN (3 views)
Moradi et al. (2016b) CT CNN Labeling of 2D slices from cardiac CT exams; comparison with handcrafted features
de Vos et al. (2016b) CT CNN Detect bounding boxes by slice classification and combining 3 orthogonal 2D CNNs
Wolterink et al. (2016) CT CNN Coronary calcium detection in gated CTA; compares 3D CNN with multi-stream 2D CNNs
Zreik et al. (2016) CT CNN Left ventricle segmentation; multi-stream CNN (3 views) voxel classification

4.7. Abdomen

Most papers on the abdomen aimed to localize and
segment organs, mainly the liver, kidneys, bladder, and
pancreas (Table 8). Two papers address liver tumor seg-
mentation. The main modality is MRI for prostate anal-
ysis and CT for all other organs. The colon is the only
area where various applications were addressed, but al-
ways in a straightforward manner: A CNN was used
as a feature extractor and these features were used for
classification.

It is interesting to note that in two segmentation
challenges - SLIVER07 for liver and PROMISE12 for
prostate - more traditional image analysis methods were
dominant up until 2016. In PROMISE12, the current
second and third in rank among the automatic methods
used active appearance models. The algorithm from
IMorphics was ranked first for almost five years (now
ranked second). However, a 3D fCNN similar to U-net
(Yu et al. (2017)) has recently taken the top position.
This paper has an interesting approach where a sum-
operation was used instead of the concatenation opera-
tion used in U-net, making it a hybrid between a ResNet
and U-net architecture. Also in SLIVER07 - a 10-year-
old liver segmentation challenge - CNNs have started
to appear in 2016 at the top of the leaderboard, replac-
ing previously dominant methods focused on shape and
appearance modeling.

4.8. Musculoskeletal

Musculoskeletal images have also been analyzed by
deep learning algorithms for segmentation and identifi-
cation of bone, joint, and associated soft tissue abnor-
malities in diverse imaging modalities. The works are
summarized in Table 9.

A surprising number of complete applications with
promising results are available; one that stands out is
Jamaludin et al. (2016) who trained their system with
12K discs and claimed near-human performances across
four different radiological scoring tasks.

4.9. Other

This final section lists papers that address multiple
applications (Table 10) and a variety of other applica-
tions (Table 11).

It is remarkable that one single architecture or ap-
proach based on deep learning can be applied with-
out modifications to different tasks; this illustrates the
versatility of deep learning and its general applicabil-
ity. In some works, pre-trained architectures are used,
sometimes trained with images from a completely dif-
ferent domain. Several authors analyze the effect of
fine-tuning a network by training it with a small data set
of images from the intended application domain. Com-
bining features extracted by a CNN with ‘traditional’
features is also commonly seen.

From Table 11, the large number of papers that ad-
dress obstetric applications stand out. Most papers ad-
dress the groundwork, such as selecting an appropriate
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Table 8: Overview of papers using deep learning for abdominal image analysis.

Reference Topic Modality Method Remarks

Multiple

Hu et al. (2016a) Segmentation CT CNN 3D CNN with time-implicit level sets for segmentation of liver, spleen and kidneys

Segmentation tasks in liver imaging

Li et al. (2015) Lesion CT CNN 2D 17×17 patch-based classification, Ben-Cohen et al. (2016) repeats this approach
Ben-Cohen et al. (2016) Liver CT CNN 2D CNN similar to U-net, but without cross-connections; good results on SLIVER07
Christ et al. (2016) Liver & tumor CT CNN U-net, cascaded fCNN and dense 3D CRF
Dou et al. (2016a) Liver CT CNN 3D CNN with conditional random field; good results on SLIVER07
Hoogi et al. (2016) Lesion CT/MRI CNN 2D CNN obtained probabilities are used to drive active contour model
Hu et al. (2016b) Liver CT CNN 3D CNN with surface evolution of a shape prior; good results on SLIVER07
Lu et al. (2017) Liver CT CNN 3D CNN, competitive results on SLIVER07

Kidneys

Lu et al. (2016) Localization CT CNN Combines local patch and slice based CNN
Ravishankar et al. (2016b) Localization US CNN Combines CNN with classical features to detect regions around kidneys
Thong et al. (2016) Segmentation CT CNN 2D CCN with 43×43 patches, tested on 20 scans

Pancreas segmentation in CT

Farag et al. (2015) Segmentation CT CNN Approach with elements similar to Roth et al. (2015b)
Roth et al. (2015b) Segmentation CT CNN Orthogonal patches from superpixel regions are fed into CNNs in three different ways
Cai et al. (2016a) Segmentation CT CNN 2 CNNs detect inside and boundary of organ, initializes conditional random field
Roth et al. (2016a) Segmentation CT CNN 2 CNNs detect inside and boundary of pancreas, combined with random forests

Colon

Tajbakhsh et al. (2015b) Polyp detection Colonoscopy CNN CNN computes additional features, improving existing scheme
Liu et al. (2016a) Colitis detection CT CNN Pre-trained ImageNet CNN generates features for linear SVM
Nappi et al. (2016) Polyp detection CT CNN Substantial reduction of false positives using pre-trained and fine-tuned CNN
Tachibana et al. (2016) Electronic cleansing CT CNN Voxel classification in dual energy CT, material other than soft tissue is removed
Zhang et al. (2017) Polyp detection Colonoscopy CNN Pre-trained ImageNet CNN for feature extraction, two SVMs for cascaded classification

Prostate segmentation in MRI

Liao et al. (2013) Application of stacked independent subspace analysis networks
Cheng et al. (2016b) CNN produces energy map for 2D slice based active appearance segmentation
Guo et al. (2016) Stacked sparse auto-encoders extract features from patches, input to atlas matching and a deformable model
Milletari et al. (2016b) 3D U-net based CNN architecture with objective function that directly optimizes Dice coefficient, ranks #5 in PROMISE12
Yu et al. (2017) 3D fully convolutional network, hybrid between a ResNet and U-net architecture, ranks #1 on PROMISE12

Prostate

Azizi et al. (2016)) Lesion classification US DBN DBN learns features from temporal US to classify prostate lesions benign/malignant
Shah et al. (2016) CBIR MRI CNN Features from pre-trained CNN combined with features from hashing forest
Zhu et al. (2017) Lesion classification MRI SAE Learns features from multiple modalities, hierarchical random forest for classification

Bladder

Cha et al. (2016) Segmentation CT CNN CNN patch classification used as initialization for level set

Table 9: Overview of papers using deep learning for musculoskeletal image analysis.

Reference Modality Application; remarks

Prasoon et al. (2013) MRI Knee cartilage segmentation using multi-stream CNNs
Chen et al. (2015c) CT Vertebrae localization; joint learning of vertebrae appearance and dependency on neighbors using CNN
Roth et al. (2015c) CT Sclerotic metastases detection; random 2D views are analyzed by CNN and aggregated
Shen et al. (2015a) CT Vertebrae localization and segmentation; CNN for segmenting vertebrae and for center detection
Suzani et al. (2015) MRI Vertebrae localization, identification and segmentation of vertebrae; CNN used for initial localization
Yang et al. (2015) MRI Anatomical landmark detection; uses CNN for slice classification for presence of landmark
Antony et al. (2016) X-ray Osteoarthritis grading; pre-trained ImageNet CNN fine-tuned on knee X-rays
Cai et al. (2016b) CT, MRI Vertebrae localization; RBM determines position, orientation and label of vertebrae
Golan et al. (2016) US Hip dysplasia detection; CNN with adversarial component detects structures and performs measurements
Korez et al. (2016) MRI Vertebral bodies segmentation; voxel probabilities obtained with a 3D CNN are input to deformable model
Jamaludin et al. (2016) MRI Automatic spine scoring; VGG-19 CNN analyzes vertebral discs and finds lesion hotspots
Miao et al. (2016) X-ray Total Knee Arthroplasty kinematics by real-time 2D/3D registration using CNN
Roth et al. (2016c) CT Posterior-element fractures detection; CNN for 2.5D patch-based analysis
Štern et al. (2016) MRI Hand age estimation; 2D regression CNN analyzes 13 bones
Forsberg et al. (2017) MRI Vertebrae detection and labeling; outputs of two CNNs are input to graphical model
Spampinato et al. (2017) X-ray Skeletal bone age assessment; comparison among several deep learning approaches for the task at hand
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Table 10: Overview of papers using a single deep learning approach for different tasks. DQN = Deep Q-Network

Reference Task Modality Method Remarks

Shin et al. (2013) Heart, kidney, liver segmentation MRI SAE SAE to learn temporal/spatial features on 2D + time DCE-MRI
Roth et al. (2015a) 2D slice classification CT CNN Automatically classifying slices in 5 anatomical regions
Shin et al. (2015) 2D key image labeling CT, MRI CNN Text and 2D image analysis on a diverse set of 780 thousand images
Cheng et al. (2016a) Various detection tasks US, CT AE, CNN Detection of breast lesions in US and pulmonary nodules in CT
Ghesu et al. (2016a) Landmark detection US, CT, MRI CNN, DQN Reinforcement learning with CNN features, cardiac MR/US, head&neck CT
Liu et al. (2016b) Image retrieval X-ray CNN Combines CNN feature with Radon transform, evaluated on IRMA database
Merkow et al. (2016) Vascular network segmentation CT, MRI CNN Framework to find various vascular networks
Moeskops et al. (2016b) Various segmentation tasks MRI, CT CNN Single architecture to segment 6 brain tissues, pectoral muscle & coronaries
Roth et al. (2016b) Various detection tasks CT CNN Multi-stream CNN to detect sclerotic lesions, lymph nodes and polyps
Shin et al. (2016b) Abnormality detection CT CNN Compares architectures for detecting interstitial disease and lymph nodes
Tajbakhsh et al. (2016) Abnormality detection CT, US CNN Compares pre-trained with fully trained networks for three detection tasks
Wang et al. (2016e) 2D key image labeling CT, MRI CNN Text concept clustering, related to Shin et al. (2015)
Yan et al. (2016) 2D slice classification CT CNN Automatically classifying CT slices in 12 anatomical regions
Zhou et al. (2016) Thorax-abdomen segmentation CT CNN 21 structures are segmented with 3 orthogonal 2D fCNNs and majority voting

Table 11: Overview of papers using deep learning for various image analysis tasks.

Reference Task Modality Method Remarks

Fetal imaging

Chen et al. (2015b) Frame labeling US CNN Locates abdominal plane from fetal ultrasound videos
Chen et al. (2015a) Frame labeling US RNN Same task as Chen et al. (2015b), now using RNNs
Baumgartner et al. (2016) Frame labeling US CNN Labeling 12 standard frames in 1003 mid pregnancy fetal US videos
Gao et al. (2016d) Frame labeling US CNN 4 class frame classification using transfer learning with pre-trained networks
Kumar et al. (2016) Frame labeling US CNN 12 standard anatomical planes, CNN extracts features for support vector machine
Rajchl et al. (2016b) Segmentation with non expert labels MRI CNN Crowd-sourcing annotation efforts to segment brain structures
Rajchl et al. (2016a) Segmentation given bounding box MRI CNN CNN and CRF for segmentation of structures
Ravishankar et al. (2016a) Quantification US CNN Hybrid system using CNN and texture features to find abdominal circumference
Yu et al. (2016b) Left ventricle segmentation US CNN Frame-by-frame segmentation by dynamically fine-tuning CNN to the latest frame

Dermatology

Codella et al. (2015) Melanoma detection in dermoscopic images CNN Features from pre-trained CNN combined with other features
Demyanov et al. (2016) Pattern identification in dermoscopic images CNN Comparison to simpler networks and simple machine learning
Kawahara et al. (2016a) 5 and 10-class classification photographic images CNN Pre-trained CNN for feature extraction at two image resolutions
Kawahara and Hamarneh (2016) 10-class classification photographic images CNN Extending Kawahara et al. (2016a) now training multi-resolution CNN end-to-end
Yu et al. (2016a) Melanoma detection in dermoscopic images CNN Deep residual networks for lesion segmentation and classification, winner ISIC16
Menegola et al. (2016) Classification of dermoscopic images CNN Various pre-training and fine-tuning strategies are compared
Esteva et al. (2017) Classification of photographic and dermoscopic images CNN Inception CNN trained on 129k images; compares favorably to 29 dermatologists

Lymph nodes

Roth et al. (2014) Lymph node detection CT CNN Introduces multi-stream framework of 2D CNNs with orthogonal patches
Barbu et al. (2016) Lymph node detection CT CNN Compares effect of different loss functions
Nogues et al. (2016) Lymph node detection CT CNN 2 fCNNs, for inside and for contour of lymph nodes, are combined in a CRF

Other

Wang et al. (2015) Wound segmentation photographs CNN Additional detection of infection risk and healing progress
Ypsilantis et al. (2015) Chemotherapy response prediction PET CNN CNN outperforms classical radiomics features in patients with esophageal cancer
Zheng et al. (2015) Carotid artery bifurcation detection CT CNN Two stage detection process, CNNs combined with Haar features
Alansary et al. (2016) Placenta segmentation MRI CNN 3D multi-stream CNN with extension for motion correction
Fritscher et al. (2016) Head&Neck tumor segmentation CT CNN 3 orthogonal patches in 2D CNNs, combined with other features
Jaumard-Hakoun et al. (2016) Tongue contour extraction US RBM Analysis of tongue motion during speech, combines auto-encoders with RBMs
Payer et al. (2016) Hand landmark detection X-ray CNN Various architectures are compared
Quinn et al. (2016) Disease detection microscopy CNN Smartphone mounted on microscope detects malaria, tuberculosis & parasite eggs
Smistad and Løvstakken (2016) Vessel detection and segmentation US CNN Femoral and carotid vessels analyzed with standard fCNN
Twinanda et al. (2017) Task recognition in laparoscopy Videos CNN Fine-tuned AlexNet applied to video frames
Xu et al. (2016c) Cervical dysplasia cervigrams CNN Fine-tuned pre-trained network with added non-imaging features
Xue et al. (2016) Esophageal microvessel classification Microscopy CNN Simple CNN used for feature extraction
Zhang et al. (2016a) Image reconstruction CT CNN Reconstructing from limited angle measurements, reducing reconstruction artefacts
Lekadir et al. (2017) Carotid plaque classification US CNN Simple CNN for characterization of carotid plaque composition in ultrasound
Ma et al. (2017) Thyroid nodule detection US CNN CNN and standard features combines for 2D US analysis

frame from an US stream. More work on automated
measurements with deep learning in these US sequences
is likely to follow.

The second area where CNNs are rapidly improv-
ing the state of the art is dermoscopic image analy-
sis. For a long time, diagnosing skin cancer from pho-
tographs was considered very difficult and out of reach
for computers. Many studies focused only on images
obtained with specialized cameras, and recent systems

based on deep networks produced promising results. A
recent work by Esteva et al. (2017) demonstrated excel-
lent results with training a recent standard architecture
(Google’s Inception v3) on a data set of both dermo-
scopic and standard photographic images. This data set
was two orders of magnitude larger than what was used
in literature before. In a thorough evaluation, the pro-
posed system performed on par with 30 board certified
dermatologists.
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5. Concluding remarks

From the 306 papers reviewed in this survey, it is ev-
ident that deep learning has pervaded every aspect of
medical image analysis. This has happened extremely
quickly: the vast majority of contributions, 240 papers,
were published in 2016 or 2017. A large diversity of
deep architectures have been applied to medical im-
age analysis tasks. Early studies focused on pre-trained
CNNs and used them for feature extractors. The fact
that these pre-trained networks could simply be down-
loaded and directly applied to any medical image facili-
tated their use. Moreover, already existing feature based
systems could simply be extended with more features.
In the last two years, however, we have seen that end-to-
end trained CNNs have become the preferred approach
for medical imaging interpretation (see Figure 1). Such
CNNs are often integrated into existing pipelines and
replace traditional methods. This is the approach fol-
lowed by the largest group of papers in this survey and
we can confidently state that this is the current standard
practice.

The lack of large training data sets has been repeat-
edly mentioned as a challenge to apply deep learning
algorithms to medical data. However, this notion is
wrong. The use of PACS systems has been routine in
most western hospitals for at least a decade and these are
filled with millions of images. There are few other do-
mains where this magnitude of imaging data, acquired
for specific purposes, are digitally available in well-
structured archives. Moreover, increasingly large pub-
lic data sets are made available: Esteva et al. (2017)
used 18 public data sets and more than 105 training im-
ages; in the Kaggle DR competition a similar number
of retinal images were released; and several chest x-
ray studies used more than 104 images. We expect to
see many more examples in the near future of relatively
standard CNN architectures leveraging large data sets
and achieving excellent results. The competitions, chal-
lenges, and large public datasets that are available for
medical image analysis are a great help in this regard.

We identify two remaining challenges in acquiring
training data for medical image analysis. One is gaining
access to medical archives. These archives are mostly
located in closed proprietary databases in hospitals and
privacy regulations may impede distribution and access
to the data. The other challenge is obtaining annotated
image data in a systematic fashion, like the WordNet
hierarchy available for ImageNet. A wealth of clinical
information is, however, available in electronic patient
records and text reports made by specialists, describ-
ing their findings in natural language. This information

was leveraged by Schlegl et al. (2015) to compensate
the lack of annotated data in retinal images. Advances
in the computer vision community with respect to cap-
tion generation in natural images, combining text and
image analysis with RNNs and CNNs, will likely soon
make their way into medical image analysis.

For some applications, human expert level perfor-
mance has already been reached (see Section 4). This
level of performance is generally obtained using deeper
or task-specific architectures, such as Google Inception
network, ResNet or U-net. We expect that more tasks-
specific architectures will start appearing in the coming
years as well, for example in registration and content-
based image retrieval.

We also foresee deep learning approaches will be
used for related tasks in medical imaging, currently
unexplored, such as image reconstruction (see Wang
(2016)). Deep learning will thus not only have a great
impact in medical image analysis, but in medical imag-
ing as a whole.
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Appendix A: Literature selection

Pubmed was searched for papers containing ”convo-
lutional” OR ”deep learning” in any field. ArXiv was
searched for papers mentioning one of a set of terms
related to medical imaging. Conference proceedings
for MICCAI (including workshops), SPIE, ISBI and
EMBC were searched based on titles of papers. We
checked references in all selected papers and consulted
colleagues. Papers not reporting results on medical im-
age data or only using standard feed-forward neural net-
works with handcrafted features were excluded. When
largely overlapping work had been reported in multiple
publications, only the publication deemed most impor-
tant was included.
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Štern, D., Payer, C., Lepetit, V., Urschler, M., 2016. Automated age
estimation from hand MRI volumes using deep learning. In: Med-
ical Image Computing and Computer-Assisted Intervention. Vol.
9901 of Lecture Notes in Computer Science. pp. 194–202.

Stollenga, M. F., Byeon, W., Liwicki, M., Schmidhuber, J., 2015. Par-
allel multi-dimensional LSTM, with application to fast biomedical
volumetric image segmentation. In: Advances in Neural Informa-
tion Processing Systems. pp. 2998–3006.

Suk, H.-I., Lee, S.-W., Shen, D., 2014. Hierarchical feature repre-
sentation and multimodal fusion with deep learning for AD/MCI
diagnosis. NeuroImage 101, 569–582.

Suk, H.-I., Lee, S.-W., Shen, D., 2015. Latent feature representation
with stacked auto-encoder for AD/MCI diagnosis. Brain Structure
and Function 220, 841–859.

Suk, H.-I., Shen, D., 2013. Deep learning-based feature represen-
tation for AD/MCI classification. In: Medical Image Computing
and Computer-Assisted Intervention. Vol. 8150 of Lecture Notes
in Computer Science. pp. 583–590.

Suk, H.-I., Shen, D., 2016. Deep ensemble sparse regression network
for Alzheimer’s disease diagnosis. In: Medical Image Computing
and Computer-Assisted Intervention. Vol. 10019 of Lecture Notes
in Computer Science. pp. 113–121.

Suk, H.-I., Wee, C.-Y., Lee, S.-W., Shen, D., 2016. State-space model
with deep learning for functional dynamics estimation in resting-
state fMRI. NeuroImage 129, 292–307.

Sun, W., Tseng, T.-L. B., Zhang, J., Qian, W., 2016a. Enhancing deep
convolutional neural network scheme for breast cancer diagnosis
with unlabeled data. Computerized Medical Imaging and Graphics.

Sun, W., Zheng, B., Qian, W., 2016b. Computer aided lung cancer
diagnosis with deep learning algorithms. In: Medical Imaging. Vol.
9785 of Proceedings of the SPIE. p. 97850Z.

Suzani, A., Rasoulian, A., Seitel, A., Fels, S., Rohling, R., Abolmae-
sumi, P., 2015. Deep learning for automatic localization, identifi-
cation, and segmentation of vertebral bodies in volumetric mr im-
ages. In: Medical Imaging. Vol. 9415 of Proceedings of the SPIE.
p. 941514.

Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A., 2016. Inception-
v4, Inception-ResNet and the impact of residual connections on
learning. arXiv:1602.07261.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D.,
Erhan, D., Vanhoucke, V., Rabinovich, A., 2014. Going deeper
with convolutions. arXiv:1409.4842.
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