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Reinforcement Learning

• Action Selection based on agent policy:
• Agent’s goal:

– Maximizing cumulative discounted reward:
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• Approximation of Action-value function:�� 
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Reinforcement Learning

Q Learning Algorithm:
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Input: �α, γ�
Initialize Q* s, a 	randomly

Repeat for each episode

 indicate policy π using Q*
 initialize s

Repeat

choose action a considering policy π
do action a and observe reward R s, a and next state s’Q* s, a ← 	 1 � α Q* s, a � 	α R s, a � 	γ	max23∈4 Q* s�, a� 	     

   

until s is a final state.



Reinforcement Learning

Back gammon Environment:

• Number of states: about 105

• Number of learning episodes until convergence: 1.5 millions!
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Hierarchical Reinforcement Learning

In enormous environments, use abstraction:
– State Abstraction

– Temporal Abstraction
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Hierarchical Reinforcement Learning

Option Framework:
– Formal description of macro actions.

– Option is a sorted tuple: o � 7, 8, 9 	
• 7: Set of states that o is permitted on.

• 8: Agent’s policy,   8:  ! " → 0, 1
•   9�
�  : Function to indicate episode finishing.

– Primitive actions as options
• 7 : the state action is permitted on.

• 8 
, � � 1
• 9 
 � 1
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Ant Colony Optimization

• Ant System

– Find Shortest path from s to t

– ;� episodes

– ;< ants

– Stochastic path creation based 

on pheromone values.
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Ant Colony Optimization – Ant System

– Path generation

=>?< @ � 	A �B>? @ � �1 � ��C>?�@�∑ �B>? @ � �1 � ��C>?�@�?∈EFG��� 						HI	J ∈ K><�@�	
0																																																																	HI	J ∉ K><�@�

– Evaporation:B>? @ � 1 � 1 � M B>? @
- Pheromone deposit:∆B>?< @ ∝ 1P< @
– Use taboo list.
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Proposed Method – Bird’s Eye View
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• Interaction in env

• Interaction history 

stored in weighted 

directed graph

1- Transition Graph 

Generation

•Execution of ant 

system

•Roughness 

consideration of 

edges on shortest 

path

•Selection of edges 

with lower amounts 

of Roughness

•Deletion of 

consecutive 

bottleneck edges

2- Sub-goal 

Identification

• Shortest path 

segmentation

• Identification of 

communities on the 

shortest path

• Acquiring of 

optimal policies in 

each community.

3- Skill Generation



Proposed Method- Sub-goal Identification

Execution of ant system on transition graph

• Regular participation of u in generated shortest paths

• Irregular participation of v in generated shortest paths
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Proposed Method- Sub-goal Identification

• Comparison of pheromone values of u and v during 

ant system
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Proposed Method- Sub-goal Identification

Proposed Criteria for separation

of these edges, called

Roughness:

– �Q � RST�U�VF QFW	U>XF QF�T
Where Y> � Z>[\ � Z>

13



Proposed Method- Sub-goal Identification

• Sorting shortest path edges based on pheromone 

values
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Proposed Method- Sub-goal Identification

• Separation of bottleneck edges:
– Using threshold values:

• For pheromone values: B]
• For pheromone increase slope: B^

b is the rank border between bottleneck and non-bottleneck edges iff:Z�H_ ` � @�ab	�;c	∀H e `: Z�H_ H � I�_
b   Z�H_ H � 	 �c> f	B^ 	. c>X>�	h�	i> f B]. i
�
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Proposed Method- Sub-goal Identification

• Removing consecutive bottleneck edges.

• Getting vertices on bottleneck edges as final sub-

goals.
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Proposed Method- Sub-goal Identification

• Sub-goal discovery algorithm
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Proposed Method- Sub-goal Identification

• Incremental variance calculation:
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Environments

• Taxi Environment
– Goal: take person to destination

– Actions:
• Movement in 4 directions

• Take passenger in taxi

• Take passenger out of taxi

– Reward
• +10: taking the passenger in taxi

• +20: take passenger out in destination

• -1: every other action
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Environments

• Playroom environment
– Goal: making monkey scream

– Actions:
• 1) look at a random object
• 2) look at object at hand
• 3) hold object it is looking at
• 4) look at object marker is placed on
• 5) place marker on object it is looking at
• 6) move object in hand to location it is looking at
• 7) turn over light switch 
• 8) press music button
• 9) hit ball toward the marker.

– Rewards:
• +1000: reaching the goal
• -1: every other action
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Experimental Results

• Taxi environment

 ;�= 10, ;< = 25, � = 0.9, M = 0.98, B] = 1.01, B^ = 1.5
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Experimental Results

• Playroom Environment

;� = 200, ;< = 10, � = 0.9, M = 0.98, B] = 2.0, B^ = 1.5
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